Gerhard Knieper

Hyperbolic Dynamics & Riemannian Geometry

Survey on geodesic flows w/ some hyperbolicity:

- generically d. hyp.
- M"odels of non-positive curvature (older work)
 - rank 1 case:
 - non-uniform hyp.
 - higher rank:
 - partial hyp.

\((M,g)\) cpl., Riemann:

SM unit tangent bundle,
\(\phi^t\) geodesic flow

Tools

- Entropy measures hyp.
 - measure theoretic entropy:
 - \(\mu\) & \(\phi^t\) inv. measure,
 - \(h_{\mu}(\phi^t) > 0\) entropy.
 - For \(\mu\) Liouville measure,
 - \(h_{\mu_L}(\phi^t) = \sum_{\gamma} \alpha^+(\gamma) d\mu_L\)
 (Poincaré formula)
 - \(\alpha^+ = \sum\alpha^+L_i\) Lyapunov expo.

- top. entropy
\[h_{\text{top}}(\phi^t) = \sup_{\mu} h_{\mu}(\phi^t) \quad \text{Variational principle.} \]

Conjecture

Given \(M < pt \), the geodesic flow of generic metric has positive top entropy.

Progress towards this

If \(\dim M = 2 \), this holds.
- Only surface where one has challenge is \(S^2 \).
- For higher genus have exp growth of periodic orbits
- For tori, have Hedlund et al. to get horseshoe.

Contreras-Paternain [2002]
- \(C^0 \) topology, generic, by dominated splitting

Knieper-Weiss [2002]
- \(C^0 \) topology, generic

Tools
- Global Poincaré sectors;
- Theory of prime ends (Mather).

(for some situations, Birkhoff showed \(\exists \) Global P. Sections;
for others need recent results of Mather et al.)

(Mather theorem: if you have \(P \) section
with fixed point, then unstable arc accumulates at another fixed point, which must be hyperbolic)
Application

Use Katok remark: \(\dim M = 2 \)
\[h_{\mu_L} > 0 \iff \phi^t : S^1 \to S^1 \]
has a horseshoe.

Conclusion for \(\dim = 2 \), generically
closed geodesics grow (at least) exponentially.

Questions

- What can be said for \(h_{\mu_L}(\phi^t) \) ?
 (very bad)

- Is there a metric of positive curvature
 for which \(h_{\mu_L}(\phi^t) > 0 \) ?

\[
\begin{cases}
\text{KATOK Q: on sphere?} \\
\text{A: question is if there is method, some}
\text{mechanism for generating entropy...}
\end{cases}
\]

Now we focus on manifolds with nonpositive curvature.
\[M = X/\Gamma \quad , \quad X = \mathbb{R}^n \quad , \quad \Gamma = \pi_1(M) \]

Link to geometry:
\[h_{\mu_L} = \int_{S^1} H(u) \, d\mu_L \]
\(H(u) > 0 \) is mean curvature of
outside hemisphere (= unstable mfd)

\[h_{\mu_L} = 0 \Rightarrow M \text{ is flat, diffeomorphic to } \mathbb{T}^n \]
\[h_{\text{top}} = \lim_{r \to \infty} \frac{\log \text{vol}(B(p,r))}{r} \]

\text{Vol} \text{ \ w.r.t. \ lifted \ metric \ on } \tilde{M} \quad (\text{due \ to \ Manning})

Using the hyperbolicity known in these cases, we estimate volume growth of \(B(p, r) \):

Then \(E \) \text{ Knüppel) }

\[M = \mathbb{R}^n \text{ o.p. } K \leq 0, \text{ not flat} \]

then \(a > 1 \) s.t. \(\frac{1}{a} \leq \frac{\text{vol}(B(p,r))}{e^{br}} \frac{\text{rank} X}{r^{k-1}} \leq a \)

\text{Remark} \quad \text{for } K < 0 \text{ rank } X = 1 \text{ always.}

In this case, Margulis showed in his thesis.

\[\frac{\text{vol}(B(p,r))}{e^{br}} \to a(p) \]

\text{Remark (Knörr)) Rigidity result of (2)}

Note that \(a \) is constant in some case;

Knüppel: in dim 2 this is 'iff' curvature is constant.

\text{Rank} \quad \text{for } K \leq 0, r < SM,

\[\text{rank}(r) = \text{dim } \{ \text{parallel Jacobian Fields dep. } r \} \geq 1 \]

\[\text{rank}(M) = \sup_{r < SM} \text{rank}(r) \]
Geometric rank measures flatness:
\[\text{rank} \geq 2 \implies \exists \text{ all Jacobi field } E + \varepsilon i \]
\[\implies K(E, i v) = 0 \]

\[\text{rank} = 1, \phi v \text{ scalar } \implies \text{ all hypersurfaces along } \phi v \text{ are non-zero.} \]

Rank - Rigidity (Burns, Ballmann, etc.):
\[\text{rank} \geq 2, X \text{ irreducible } \implies X \text{ symmetric space} \]

Stampfli
\[\text{dim } M = 2 : \text{ all surfaces, genus } \geq 2, K \leq 0. \]
\[(\text{by Gauss-Bonnet, } K = 0 \implies \text{higher rank (?)}) \]
\[\text{dim } M > 2, \text{ graph manifolds (Grumiau)} \]

\[\text{Heintze examples: } \mathbb{Z}^2 \to \pi_1(M) \text{ excludes strictly negative curvature} \]
Dynamics in rank 1 and singular set.

\[s_M = \text{reg} \cup \text{sing} \]

\[Z = \{ \omega \in s_M \mid \text{rank } \omega = 1 \} \]

is hyperbolic set.

Q: What can you say about size of sing?

if \(\mu_Z(\text{sing}) = 0 \) then \(\text{ergodic} \).

For \(\dim M = 2 \), \(M \) analytic \(\Rightarrow \)

\(\text{sing} = \text{finite union of closed geodesics} \).

[In higher dim (\(> 2 \)) there are examples, e.g.,]

[For example, \(\text{dynamically at least} \) for \(\dim > 2 \) on sing.]

Counting closed geodesics.

\(F(M) = \text{free homotopy classes} \).

For each pick closed geodesic.

\(C = \{ \text{collection of closed geodesics representing } F(M) \} \)

\(P(\ell) = \{ c \in C \mid \ell(c) \leq \ell \} \).

\(\ell(c) \) length.

\(\# P(\ell) \) ind. of \(C \).

Split into two classes:

- \(P_{\text{reg}}(\ell) = \{ c \in P(\ell) \mid c \text{ regular} \} \)
- \(P_{\text{sing}}(\ell) = \{ c \in P(\ell) \mid c \text{ singular} \} \)
Then (Knieper)

\[a > 1 \quad \text{s.t.} \]

\[\frac{1}{a} \frac{e^{ht}}{t} \leq \# \text{preg}(t) \leq a \frac{e^{ht}}{t} \]

Then (Gunesch)

\[\# \text{preg}(t) \sim \frac{e^{ht}}{ht} \]

Simple closed geodesics can also grow exponentially, provided \(\dim M \geq 2 \), but speed cannot be same:

Then (Knieper) \(\exists \varepsilon > 0 \) s.t.

\[\frac{\# \text{preg}(t)}{\# \text{sing}(t)} \leq e^{-\varepsilon t} \]

as \(t \to \infty \)

Q: Karkov Can you hope for uniform estimate? say in \(\dim 2 \)? Depending on global characteristics like \(\dim, \text{vol}(M) \), etc.

A: Hard to say...

Proof follow conjecture of Karkov.

If \(\text{rank} = 1 \), then

- \(\exists \mu_{\text{max}} \) of maximal entropy,
- \(\mu_{\text{max}} \) is ergodic, \(\mu_{\text{max}}(\text{sing}) = 0 \)
- regular closed geodesics are equidistributed w.r.t. \(\mu_{\text{max}} \)
How to use this to estimate $\# \Psi(x)$?

Let A be collection of closed non-homotopic geodesics,
$$PA = \{ \gamma \in A \mid l(\gamma) \leq \epsilon \}.$$

Assume
$$\limsup_{\epsilon \to 0} \frac{\log \#PA(\epsilon)}{\epsilon} = h_{\text{top}}(\Phi^\epsilon).$$

So
$$\exists \epsilon_0 \text{ such that } \frac{\log \#PA(\epsilon)}{\epsilon} \leq h_{\text{top}}(\Phi^\epsilon)$$

as other wise $\mu_{\max}(\Psi(\epsilon)) = 1$.

Newer results

Higher rank rank $X > 1$, X irreducible.

By rank rigidity, X is symmetric space.

Isometry group $G = I_0(X)$ acts on S^1.

Fix Weyl chamber $W < S^1$, $w \in W$.

Then $SM_w = P \setminus Gw$ is Φ^w invariant and ergodic. For $\mu^w = \mu_w$ induced on SM_w.

\exists unique $v \in E$ center of W^w, v_0.

$\frac{h_{\mu_{v_0}}}{h_{\mu_{v_0}}^w} = h_{\text{top}}(\Phi^w)$.
then this μ_0 is uniquely determined to be of maximal entropy.

Ask how tori are distributed.

For $c > 0$, let $\mathcal{P}_c(M)$ be the maximal set of c-separated closed geodesics.

$$\mathcal{P}_c(M) = \{ c \in \mathbb{R}^+ \mid \ell(c) < +\}$$

Spatzier showed:

$$\lim_{\varepsilon \to 0} \frac{\log n_\varepsilon(c)}{\varepsilon} = \log \mu_0(c)$$

Remark: Not known if same growth rate holds for free homotopy classes instead of c-separated.

Corollary: $\mathcal{P}_c(M)$ is equidistributed with μ_0.

Questions:

Application to Rigidity:

Theorem (Knieper):

Let M, g_0 be C^1, locally symmetric, $K \leq 0$, $g = f g_0$ for f smooth.

Then:

$$\int_M \hat{h}(g) \cdot \text{vol}(M, g) \geq \int_M \hat{h}(g_0) \cdot \text{vol}(M, g_0)$$

iff $g = c g_0$ for const. $c > 0$.
Remark rank 1 version due to Kadok.
In that case then holds for all metrics (not just conformal) due to (Besin, Cartron, Gallot).

Open extend BCG method to higher rank case.

Q: (Kadok) In construction of equivalent for higher rank, ... (?)

Let
Hyperbolic dynamics and Riemannian geometry

Gerhard Knieper (Bochum)

Survey on geodesic flows with some amount of hyperbolicity

- Genericity of hyperbolicity

- Manifolds of nonpositive curvature
 - rank 1 case ("non uniform hyperbolicity")
 - higher rank case ("partial hyperbolicity")

\((M, g)\) compact Riemannian manifold

\(SM\) unit tangent bundle

\(\phi^t : SM \rightarrow SM\) geodesic flow \(\phi^t(v) = \dot{c}_v(t)\),
where \(c_v : \mathbb{R} \rightarrow M\) geodesic with \(\dot{c}_v(0) = v\)

\[\begin{align*}
 v & \rightarrow \\
 \dot{c}_v(t) & = \phi^t(v)
\end{align*} \]
Tool for measuring hyperbolicity

Entropy

- measure theoretic entropy

\[\mu \text{ a } \phi^t \text{-invariant measure} \Rightarrow h_\mu(\phi^t) \geq 0 \]

In particular: \(\mu_L = \text{Liouville measure} \)

\[h_{\mu_L}(\phi^t) = \int_{SM} \chi^+(v) d\mu_L \]

(Pesin's formula)

\(\chi^+(v) \) sum of positive Lyapunov exponents

- topological entropy

\[\phi^t \Rightarrow h_{\text{top}}(\phi^t) \geq 0 \]

Variational principle:

\[h_{\text{top}}(\phi^t) = \sup_\mu h_\mu(\phi^t) \]

Conjecture: Given a compact manifold \(M \). The geodesic flow of a generic Riemannian metric has positive topological entropy.
Compact manifolds of nonpositive curvature

\[M = X/\Gamma, \quad X \cong \mathbb{R}^n, \quad \Gamma \cong \pi_1(M) \]

- Geometric description of entropy

\[h_{\mu_L}(\phi^t) = \int_{SM} H(v) d\mu_L \]

\[H(v) \geq 0 \] mean curvature of the unstable horosphere (\sim weak unstable manifold) through \(v \in SM \)

\[h_{\mu_L}(\phi^t) = 0 \Rightarrow M \text{ is flat and diffeomorphic to } T^n \]

- \[h_{\text{top}}(\phi^t) = \lim_{r \to \infty} \frac{\log \text{vol} B(p,r)}{r} \]

\(B(p,r) \) ball of radius \(r \) about \(p \in X \).
Using tools from hyperbolic dynamics →

Theorem [K, GAFA 1997]

If $M = X/\Gamma$ compact, $K \leq 0$, non flat.
$\Rightarrow \exists a > 1$ s. t.

$$\frac{1}{a} \leq \frac{\text{vol}B(p, r)}{e^{hr}r^{(\text{rank}_X - 1)/2}} \leq a$$

$h = h_{\text{top}}$ and rank_X geometric rank of X

Remark: $K < 0 \Rightarrow \text{rank}_X = 1$

Margulis:

$$\frac{\text{vol}B(p, r)}{e^{hr}} \to a(p)$$

Geometric rank

$(M, g), K \leq 0 \quad \forall \in SM$

$$\text{rank}(v) = \text{dim}\{\text{parallel Jacobi fields along } c_v\} \geq 1$$

$$\text{rank}(M) = \min_{v \in SM} \text{rank}(v)$$
Geometric rank measure flatness ("lack of hyperbolicity")

- \(\text{rank}(v) \geq 2 \Leftrightarrow \exists \) a parallel Jacobi field
 \[
 E \perp \dot{c}_v \\
 \Rightarrow K(E, \dot{c}_v) = 0
 \]

- \(\text{rank}(v) = 1, \phi^t v \) recurrent \(\Rightarrow \)
 all Lyapunov exponents along \(\phi^t v \) are non-zero

Rank rigidity (Ballmann, Burns-Spatzier)

\[
M = X/\Gamma \text{ compact, } K \leq 0, \text{ rank } X \geq 2 \\
X \text{ irreducible } \Rightarrow X \text{ is a symmetric space.}
\]
Examples of compact rank 1 spaces

- \(\dim M = 2 \): all surfaces of genus \(\geq 2 \), \(K \leq 0 \)

- \(\dim M > 2 \): There are examples, e.g. (graph manifolds (Gromov), Heintze examples), s.t.
 \[\mathbb{Z}^2 \rightarrow \pi_1(M) \]
 \(\Rightarrow \) no metric of strictly negative curvature exists, no geodesic Anosov flow

Dynamics of rank 1 spaces

\(SM \) splits in two \(\phi^t \)-invariant subsets

\[
\text{reg} := \{ v \in SM \mid \text{rank}v = 1 \}
\]

\[
\text{sing} := SM \setminus \text{reg}
\]

Question: \(\mu_1(\text{sing}) = 0? \) If yes \(\rightarrow \) ergodicity.

\(\dim M = 2, M \) analytic \(\Rightarrow \) \(\text{sing} \) is a finite union of closed geodesics
Counting closed geodesics

\(F(M) \) free homotopy classes in \(M \)

\(\mathcal{C} = \{ \text{collection of closed geodesics representing } F(M) \} \)

\(P(t) = \{ c \in \mathcal{C} | \ell(c) \leq t \} \)

(\(\#P(t) \) is independent of \(\mathcal{C} \))

- \(P_{\text{reg}}(t) = \{ c \in P(t) | c \text{ regular} \} \)
- \(P_{\text{sing}}(t) = \{ c \in P(t) | c \text{ singular} \} \)

Theorem 1 [K, GAFA 1997, Handbook 2002]

\[\exists a > 1 \text{ such that:} \]

\[\frac{e^{ht}}{a t} \leq \#P_{\text{reg}}(t) \leq a \frac{e^{ht}}{t} \]

Remark:

- Gunesch: \(\#P_{\text{reg}}(t) \approx \frac{e^{ht}}{ht} \)

- \(\#P_{\text{sing}}(t) \) can grow exponentially if \(\dim M \geq 3 \)
Theorem 2 \(\exists \varepsilon > 0 \) such that

\[
\frac{\#P_{\text{sing}}(t)}{\#P_{\text{reg}}(t)} \leq e^{-\varepsilon t}
\]

for \(t \to \infty \).

Proof follows from a theorem conjectured by A. Katok (1984 - MSRI)

Theorem 3 [K, Annals 1998]

Let \(M \) be a compact rank 1 manifold

- \(\exists \) a unique measure \(\mu_{\text{max}} \) of maximal entropy, i.e.

 \[h_{\mu_{\text{max}}}(\phi^t) = h_{\text{top}}(\phi^t) \]

- \(\mu_{\text{max}} \) is ergodic and \(\mu_{\text{max}}(\text{sing}) = 0 \)

- regular closed geodesics are equidistributed
Geodesic flows in higher rank

$M = \frac{X}{\Gamma}$ compact, $K \leq 0$, rank$X > 1$ and X
irreducible $\Rightarrow X$ symmetric space
$G = \Gamma_0(X)$ acts on SX

Fix a Weyl chamber $W \in SX$ \Rightarrow

- $SM_v = \Gamma \backslash Gv$ is ϕ^t-invariant and ergodic
 w.r.t. the Liouville measure μ_v induced on SM_v

- \exists a unique $v_0 \in W$ (center of W), s. t.

 $h_{\mu_{v_0}}(\phi^t) = h_{\text{top}}(\phi^t)$

Theorem (K. to appear in Israel Journal)
The measure of maximal entropy is uniquely determined and therefore given by μ_{v_0}
Proof of Theorem 2

Let A be any collection of closed non homotopic geodesics, $\mathcal{P}_A(t) = \{ c \in A \mid \ell(c) \leq t \}$. Assume

$$\limsup_{t \to \infty} \frac{\log \# \mathcal{P}_A(t)}{t} = h_{\text{top}}(\phi^t)$$

Let μ^A_t be an invariant probability measure supported on $\mathcal{P}_A(t)$, i.e.

$$\int f d\mu^A_t = \sum_{c \in \mathcal{P}_A(t)} \frac{1}{\ell(c)} \int f(c(s)) ds \quad \frac{\# \mathcal{P}_A(t)}{\# \mathcal{P}_A(t)}$$

\Rightarrow exists weak limit, s.t. $\mu^A_{t_k} \to \mu_{\text{max}}$

In particular: $\limsup_{t \to \infty} \frac{\log \# \mathcal{P}_{\text{sing}}(t)}{t} \leq h_{\text{top}}(\phi^t)$

since otherwise: $\mu_{\text{max}}(\text{sing}) = 1$
Equidistribution of closed geodesics

For $\varepsilon > 0$ let $P_\varepsilon(M)$ be a maximal set of ε-separated closed geodesics.

$$P_\varepsilon(t) = \{ c \in P_\varepsilon(M) \mid \ell(c) \leq t \}$$

Spatzier: $\exists \varepsilon > 0$ s. t.

$$\lim_{t \to \infty} \frac{\log \#P_\varepsilon(t)}{t} = h_{\text{top}}(\phi^t)$$

Corollary: $P_\varepsilon(M)$ is equidistributed w.r.t. μ_0, i. e.

$$\int f d\mu_t := \sum_{c \in P_\varepsilon(t)} \frac{1}{\ell(c)} \int f(c(s)) ds \frac{1}{\#P_\varepsilon(t)} \to \int f d\mu_0$$

Question: Can one replace ε-separated by non homotopic closed geodesics?
Application to rigidity

Theorem (K): Let (M, g_0) be a compact locally symmetric space of nonpositive curvature and $g = f g_0$ for a smooth positive function $f : M \to \mathbb{R}$.

Then

$$h^n(g) \cdot \text{vol}(M, g) \geq h^n(g_0) \cdot \text{vol}(M, g_0)$$

Equality holds iff: $g = c \cdot g_0$ for a constant $c > 0$.

Remark: $\text{rank} M = 1$ due to A. Katok

In this case: theorem holds for all metrics g (Besson, Courtois, Gallot)