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Digital Images

Digital Image An image f(x, y) discretized in both spatial
coordinates and in brightness

Gray scale Digital Image = Matrix

• row and column indices = point in image

• matrix element value = gray level at that point

• pixel = element of digital array or picture element
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Example

• Square

• Surface Plot of Square

• Edges in 1D
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Digital Image Processing

The set of techniques for the manipulation, correction, and
enhancement of digital images

Methods in Image Processing

• Fourier/wavelet transforms

• Stochastic/statistical methods

• Partial differential equations (PDEs) and
differential/geometric models

– Systematic treatment of geometric features of images
(shape, contour, curvature)

– Wealth of techniques for PDEs and computational fluid
dynamics
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Gibbs Phenomenon

• Fourier series approximation of a square wave

• Another view

• Animation

Back to previous page

7

http://cnx.rice.edu/content/m10092/latest/#four_four
http://mathworld.wolfram.com/GibbsPhenomenon.html
http://www.sosmath.com/fourier/fourier3/gibbs.html


Partial Differential Equations

Computational Fluid Dynamics

• Think of a fluid as as a collection of discrete particles
(molecules).

• Too complicated, so represent fluid as a continuum.

• To solve the continuous problem, use numerics to re-discretize
the fluid in the right way.

Image Processing

• A digital image is a collection of discrete particles (pixels).

• Hard to manipulate each individual pixel, so represent the
image as a continuous function.

• To solve the continuous problem, use numerics to re-discretize
the image in the right way.
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Linear Diffusion [Wit83]

Proposal: Filter an original image u0(x, y) with Gaussian kernels
of variance 2t.

Result: A one-parameter family of images u(t, x, y) Witkin
referred to as “a scale space.”

Limitation: Linear Gaussian smoothing blurs and displaces
images. Example

Insight: The family of images u(t, x, y) is the solution of the linear
heat equation with u0(x, y) as the initial data:

ut = uxx + uyy

u0(x, y) = u0(x, y)

New Idea: Process images by evolving nonlinear PDEs → using
appropriate function spaces
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The Fundamental Solution of the Heat Equation

ut = uxx + uyy

u0(x, y) = u0(x, y)

• Parabolic partial differential equation

• Describes diffusion of

– Heat in a region Ω

– Dye or other substance in a still fluid

• At a microscopic level, it results from random processes.
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Examples of Digital Image Processing

Smoothing Removing bad data.

Sharpening Highlighting edges (discontinuities).

Restoration Determination of unknown original image from given
noisy image.

• Usually involves prior knowledge about the noise process
(e.g.., Gaussian noise).

• Ill-conditioned inverse problem.

• No unique solution.

• Regularization techniques impose desirable
properties on the solution by restricting the solution
space.
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How To Describe Desired Image?

• Contains edges (discontinuities).

• In other words, preserves high gradient in a geometric setting.

• Qualitative description.

How To Obtain Desired Image?

• Create a functional, which upon being optimized, achieves the
stated goal of an image with edges.

• Choose the right solution space.

• Called the variational approach.

• Formulated in continuous domain which has many analytical
tools.
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Total Variation

• Original image u has simple geometric description.

Objects: Set of connected sets.

Edges: Smooth contours of objects.

• Image is smooth inside the objects but has jumps across the
boundaries.

• The functional space modeling these properties is BV (Ω), the
space of integrable functions with finite total variation

TV (u) =
∫

Ω

|∇u|,

where Ω denotes the image domain (for instance, the computer
screen) and is usually a rectangle.
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Total Variation

TV (u) =
∫

Ω

|∇u|

=
∫ b

a

∣∣∣∣du

dx

∣∣∣∣ dx

= lim
n→∞

n∑
k=1

∣∣∣∣du(xk)
dx

∣∣∣∣∆x

≈
n∑

k=1

∣∣∣∣u(xk+1)− u(xk)
∆x

∣∣∣∣∆x

≈
n∑

k=1

|u(xk+1)− u(xk)|
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Bounded Variation

• A function f(x) is said to have bounded variation if, over
the closed interval x ∈ [a, b], there exists an M such that

|f(x1)− f(a)|+ |f(x2)− f(x1)|+ · · ·+ |f(b)− f(xn−1)| ≤ M

for all a < x1 < x2 < · · · < xn−1 < b.

• The total variation (TV) is the vertical component of the
arc-length of the graph of f .

• Example

• For smooth images, the TV norm is equivalent to the L1 norm
of the derivative.

• TV norm is some measure of the amount of oscillation found in
the function u(x).
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Basic Properties of BV Space

• Provides regularity of solutions.

• Allows sharp discontinuities (edges).

Total Variation Integral

TV (u) =
∫

Ω

|∇u| dx

= sup
{∫

Ω

u(∇ ·w) dx : w ∈ C1
c (Ω, R2), |w(x)| ≤ 1∀x ∈ Ω

}
• C1

c (Ω, R2) is the set of functions with continuous first
derivatives and compact support on Ω.

• u ∈ L1(Ω)

• Ω ⊂ R2 is a bounded open set.
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New Definition of BV Space

BV (Ω) =
{

u ∈ L1(Ω) :
∫

Ω

|∇u| < ∞
}

Features

• BV functions are L1 functions with bounded TV semi-norm.

• u need not be differentiable

• Discontinuities allowed

• Derivatives considered in the weak sense

Functions of bounded variation need not be differentiable!
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Total Variation Minimization [ROF92]

min
u∈BV (Ω)

∫
Ω

(
α|∇u|+ 1

2
|u− z|2

)
dx

α: Regularization parameter (user-chosen scalar).

Unknown image: A real-valued function u : Ω → R.

Noisy image: A real-valued function z : Ω → R.

Ω: Nonempty, bounded, open set in R2 (usually a square).

Strictly Convex Functional: Admits unique minimum.
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Intuition Behind Total Variation Minimization

min
u

∫
Ω

α|∇u|+ 1
2
(u− z)2 dx

• min
u
|∇u|

– |∇u| = 0

– u constant

• min
u
‖u− z‖

– u = z

– u noisy image

• Weighted sum between constant image and noisy image
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Calculus of Variations

• A branch of mathematics that is a sort of generalization of
calculus.

– Deals with functions of functions (functionals) as opposed
to functions of numbers.

– Functionals can be formed as integrals involving an
unknown function y(x) and its derivatives.

• Calculus of variations seeks to find the path, curve, surface,
etc., y(x) for which a given functional has a stationary value
(which, in physical problems, is usually a minimum or
maximum).
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Calculus of Variations

Extremal functions: Those functions y(x) making the
functional attain a maximum or minimum value.

Variational: Used of all extremal functional questions.

• Mathematically, this involves finding stationary values y(x) of
integrals of the form

I =
∫ b

a

f(y, y′, x) dx

• I has an extremum only if the Euler-Lagrange differential
equation is satisfied, i.e., if

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0

• Brachistochrone curve
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Euler-Lagrange Equation (PDE)

• 1st-order necessary condition for the minimizer u

min
u

∫
Ω

α|∇u|+ 1
2
(u− z)2 dx

• Theory

−α∇ ·
(
∇u

|∇u|

)
+ u− z = 0

• Degenerate nonlinear elliptic PDE when |∇u| = 0

• Practice

−α∇ ·

(
∇u√

|∇u|2 + β

)
+ u− z = 0

small β > 0
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Previous Work

−α∇ ·

(
∇u√

|∇u|2 + β

)
+ u− z = 0

Rudin-Osher-Fatemi 1992 Time marching to steady state with
gradient descent. Improvement in Marquina-Osher 1999.

Chan-Chan-Zhou 1995 Continuation procedure on β.

Vogel-Oman 1996 Fixed point iteration.
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Dependence on β

−α∇ ·

(
∇u√

|∇u|2 + β

)
+ u− z = 0 (1)

β large Smeared edges.

β small PDE nearly degenerate.

No β if we rewrite (1) in terms of new variable...
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Introduce Dual Variable w

Francfort/Chan-Golub-Mulet 1995 [CGM99]

Giusti 1984 [Giu84]

Total Variation Integral

TV (u) =
∫

Ω

|∇u| dx

= sup
{∫

Ω

u(∇ ·w) dx : w ∈ C1
c (Ω, R2), |w(x)| ≤ 1∀x ∈ Ω

}
• C1

c (Ω, R2) is the set of functions with continuous first
derivatives and compact support on Ω.
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Dot Product

a · b = |a||b| cos θ

max
|b|≤1

a · b = max
|b|≤1

|a||b| cos θ

cos θ = 1 ⇐⇒ θ = 0

⇒ b coincident with a

⇒ b =
a

‖a‖

max
|b|≤1

a · b = ‖a‖

28



Intuition Behind Dual Variable w

|∇u| = max
|w|≤1

(∇u · w)

Interpretation

w =

 ∇u
|∇u| u smooth and |∇u| 6= 0

not unique otherwise
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Deriving Dual Formulation

min
u

∫
Ω

α|∇u|+ 1
2
(u− z)2 dx

• Dual definition of Total Variation

= min
u

∫
Ω

α max
|w|≤1

−u(∇ · w) +
1
2
(u− z)2 dx

• Interchange max and min

= max
|w|≤1

min
u

∫
Ω

−α u(∇ · w) +
1
2
(u− z)2 dx︸ ︷︷ ︸

Ψ(u)

• Quadratic function of u

∇Ψ(u) = ~0 ⇐⇒ u = z + α(∇ · w)
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Deriving Dual Formulation

• Write u in terms of w

max
|w|≤1

∫
Ω

−α (z + α(∇ · w))︸ ︷︷ ︸
u

(∇ · w)

+
1
2
(z + α(∇ · w)︸ ︷︷ ︸

u

−z)2 dx

• Dual max problem

max
|w|≤1

∫
Ω

−αz(∇ · w)− α2

2
(∇ · w)2 dx
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Deriving Dual Formulation

• Dual max problem

max
|w|≤1

∫
Ω

−αz(∇ · w)− α2

2
(∇ · w)2 dx

• Dual min problem

− min
|w|≤1

∫
Ω

αz(∇ · w) +
α2

2
(∇ · w)2 dx

• Standard form

min
|w|≤1

∫
Ω

z(∇ · w) +
α2

2
(∇ · w)2 dx
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Dual Total Variation Regularization

min
|w|≤1

∫
Ω

z(∇ · w) +
α2

2
(∇ · w)2 dx

• Advantages

– Quadratic objective function in (∇ · w)

– No need for perturbation parameter β

– u = z + α(∇ · w)

– w unique at edges

– w not unique at flat regions but no information lost

• Disadvantages

– Constrained optimization problem in w

– One constraint per pixel
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Previous Work on Dual TV [CGM99]

−α∇ ·

(
∇u√

|∇u|2 + β

)
+ u− z = 0 (2)

• Difficulty is the linearization of the highly nonlinear term

−∇ ·
(

∇u√
|∇u|2+β

)
• Introduce

w =
∇u√

|∇u|2 + β

• Replace (2) by equivalent system of nonlinear PDEs:

−α∇ · w + u− z = 0

w
√
|∇u|2 + β −∇u = 0

• Linearize this (u, w) system by Newton’s method.
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Previous Work on Dual TV [Cha04]

min
|w|≤1

∫
Ω

z(∇ · w) +
α2

2
(∇ · w)2 dx

u = z + α(∇ · w)

• For an N ×N image

−α(∇·w) = min{‖αdiv w−z‖2 : |wij |2−1 ≤ 0∀i, j = 1, . . . , N}

• Karush-Kuhn-Tucker conditions provide explicit expression for
Lagrange multiplier λij ≥ 0.

λij = |(∇(αdiv w − z))ij |
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• Semi-implicit gradient descent algorithm.

wn+1
ij = wn

ij + τ(
(
∇
(
div wn − z

α

))
ij

−
∣∣∣∣(∇(div wn − z

α

))
ij

∣∣∣∣wn+1
ij ) (3)

• Converges for τ ≤ 1
8
.
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Current Work on Dual TV

C.–Chan–Vandenberghe (in progress)

1D:

min
|w|≤1

∫
Ω

z
dw

dx
+

α

2

(
dw

dx

)2

dx

Nonlinear Gauss-Seidel algorithm with projection.

2D:

min
‖w‖∞≤1

∫
Ω

z(∇ ·w) +
α

2
(∇ ·w)2 dx

Linear algebra structure of [CGM99] applied to Newton
equations of interior-point method.
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Thank you!
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