Variational Methods in Image Denoising

Jamylle Carter

Postdoctoral Fellow

Mathematical Sciences Research Institute (MSRI)

MSRI Workshop for Women in Mathematics: Introduction to Image Analysis 22 January 2005

Collaborators

- Tony F. Chan (University of California, Los Angeles [UCLA])
 - Professor, Department of Mathematics
 - Dean, Division of Physical Sciences, College of Letters and Science
- Lieven Vandenberghe (UCLA)
 - Associate Professor, Department of Electrical Engineering

Outline

- 1. Edges in image processing
- 2. Insufficiency of classical tools
- 3. Total Variation (TV) model of Rudin-Osher-Fatemi
 - (a) Variational methods
 - i. [BHKU02] Short course on variational methods
 - ii. Total variation (TV) regularization
- 4. Computational challenges of primal TV
- 5. Dual TV method
 - (a) Derivation of problem
 - (b) Previous and current work
- 6. Acknowledgments

Digital Images

Digital Image An image f(x,y) discretized in both spatial coordinates and in brightness

Gray scale Digital Image = Matrix

- row and column indices = point in image
- matrix element value = gray level at that point
- pixel = element of digital array or picture element

Example

- Square
- Surface Plot of Square
- Edges in 1D

Digital Image Processing

The set of techniques for the manipulation, correction, and enhancement of digital images

Methods in Image Processing

- Fourier/wavelet transforms
- Stochastic/statistical methods
- Partial differential equations (PDEs) and differential/geometric models
 - Systematic treatment of geometric features of images (shape, contour, curvature)
 - Wealth of techniques for PDEs and computational fluid dynamics

Gibbs Phenomenon

- Fourier series approximation of a square wave
- Another view
- Animation

Back to previous page

Partial Differential Equations Computational Fluid Dynamics

- Think of a fluid as as a collection of discrete particles (molecules).
- Too complicated, so represent fluid as a continuum.
- To solve the continuous problem, use numerics to re-discretize the fluid in the right way.

Image Processing

- A digital image is a collection of discrete particles (pixels).
- Hard to manipulate each individual pixel, so represent the image as a continuous function.
- To solve the continuous problem, use numerics to re-discretize the image in the right way.

Linear Diffusion [Wit83]

Proposal: Filter an original image $u^0(x,y)$ with Gaussian kernels of variance 2t.

Result: A one-parameter family of images u(t, x, y) Witkin referred to as "a scale space."

Limitation: Linear Gaussian smoothing blurs and displaces images. Example

Insight: The family of images u(t, x, y) is the solution of the linear heat equation with $u^0(x, y)$ as the initial data:

$$u_t = u_{xx} + u_{yy}$$
$$u^0(x, y) = u^0(x, y)$$

New Idea: Process images by evolving **nonlinear** PDEs → using appropriate function spaces

The Fundamental Solution of the Heat Equation

$$u_t = u_{xx} + u_{yy}$$
$$u^0(x, y) = u^0(x, y)$$

- Parabolic partial differential equation
- Describes diffusion of
 - Heat in a region Ω
 - Dye or other substance in a still fluid
- At a microscopic level, it results from random processes.

Outline

- 1. Edges in image processing
- 2. Insufficiency of classical tools
- 3. Total Variation (TV) model of Rudin-Osher-Fatemi
 - (a) Variational methods
 - i. [BHKU02] Short course on variational methods
 - ii. Total variation (TV) regularization
- 4. Computational challenges of primal TV
- 5. Dual TV method
 - (a) Derivation of problem
 - (b) Previous and current work
- 6. Acknowledgments

Examples of Digital Image Processing

Smoothing Removing bad data.

Sharpening Highlighting edges (discontinuities).

Restoration Determination of unknown original image from given noisy image.

- Usually involves prior knowledge about the noise process (e.g.., Gaussian noise).
- Ill-conditioned inverse problem.
- No unique solution.
- Regularization techniques impose desirable properties on the solution by restricting the solution space.

How To Describe Desired Image?

- Contains **edges** (discontinuities).
- In other words, preserves high gradient in a geometric setting.
- Qualitative description.

How To Obtain Desired Image?

- Create a **functional**, which upon being optimized, achieves the stated goal of an image with edges.
- Choose the right solution space.
- Called the **variational approach**.
- Formulated in continuous domain which has many analytical tools.

Total Variation

• Original image u has simple geometric description.

Objects: Set of connected sets.

Edges: Smooth contours of objects.

- Image is smooth inside the objects but has jumps across the boundaries.
- The functional space modeling these properties is $BV(\Omega)$, the space of integrable functions with finite total variation

$$TV(u) = \int_{\Omega} |\nabla u|,$$

where Ω denotes the image domain (for instance, the computer screen) and is usually a rectangle.

Total Variation

$$TV(u) = \int_{\Omega} |\nabla u|$$

$$= \int_{a}^{b} \left| \frac{du}{dx} \right| dx$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} \left| \frac{du(x_k)}{dx} \right| \Delta x$$

$$\approx \sum_{k=1}^{n} \left| \frac{u(x_{k+1}) - u(x_k)}{\Delta x} \right| \Delta x$$

$$\approx \sum_{k=1}^{n} |u(x_{k+1}) - u(x_k)|$$

Bounded Variation

• A function f(x) is said to have **bounded variation** if, over the closed interval $x \in [a, b]$, there exists an M such that

$$|f(x_1) - f(a)| + |f(x_2) - f(x_1)| + \dots + |f(b) - f(x_{n-1})| \le M$$

for all $a < x_1 < x_2 < \dots < x_{n-1} < b$.

- The total variation (TV) is the vertical component of the arc-length of the graph of f.
- Example
- For smooth images, the TV norm is equivalent to the L^1 norm of the derivative.
- TV norm is some measure of the amount of oscillation found in the function u(x).

Basic Properties of BV Space

- Provides regularity of solutions.
- Allows sharp discontinuities (edges).

Total Variation Integral

$$TV(u) = \int_{\Omega} |\nabla u| \, dx$$
$$= \sup \left\{ \int_{\Omega} u(\nabla \cdot \mathbf{w}) \, d\mathbf{x} : \mathbf{w} \in C_c^1(\Omega, \mathbb{R}^2), \ |\mathbf{w}(\mathbf{x})| \le 1 \, \forall \mathbf{x} \in \Omega \right\}$$

- $C_c^1(\Omega, \mathbb{R}^2)$ is the set of functions with continuous first derivatives and compact support on Ω .
- $u \in L^1(\Omega)$
- $\Omega \subset \mathbb{R}^2$ is a bounded open set.

New Definition of BV Space

$$BV(\Omega) = \left\{ u \in L^1(\Omega) : \int_{\Omega} |\nabla u| < \infty \right\}$$

Features

- BV functions are L^1 functions with bounded TV semi-norm.
- u need not be differentiable
- Discontinuities allowed
- Derivatives considered in the weak sense

Functions of bounded variation need not be differentiable!

Total Variation Minimization [ROF92]

$$\left| \min_{u \in BV(\Omega)} \int_{\Omega} \left(\alpha |\nabla u| + \frac{1}{2} |u - z|^2 \right) dx \right|$$

 α : Regularization parameter (user-chosen scalar).

Unknown image: A real-valued function $u: \Omega \to \mathbb{R}$.

Noisy image: A real-valued function $z: \Omega \to \mathbb{R}$.

 Ω : Nonempty, bounded, open set in \mathbb{R}^2 (usually a **square**).

Strictly Convex Functional: Admits unique minimum.

Intuition Behind Total Variation Minimization

$$\min_{u} \int_{\Omega} \alpha |\nabla u| + \frac{1}{2} (u - z)^{2} dx$$

- $\min_{u} |\nabla u|$ $|\nabla u| = 0$ u constant
- $\min_{u} \|u z\|$ -u = z-u noisy image
- Weighted sum between constant image and noisy image

Calculus of Variations

- A branch of mathematics that is a sort of generalization of calculus.
 - Deals with functions of functions (functionals) as opposed to functions of numbers.
 - Functionals can be formed as integrals involving an unknown function y(x) and its derivatives.
- Calculus of variations seeks to find the path, curve, surface, etc., y(x) for which a given functional has a stationary value (which, in physical problems, is usually a minimum or maximum).

Calculus of Variations

Extremal functions: Those functions y(x) making the functional attain a maximum or minimum value.

Variational: Used of all extremal functional questions.

• Mathematically, this involves finding stationary values y(x) of integrals of the form

$$I = \int_{a}^{b} f(y, y', x) dx$$

• I has an extremum only if the Euler-Lagrange differential equation is satisfied, i.e., if

$$\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$$

• Brachistochrone curve

Euler-Lagrange Equation (PDE)

• 1st-order necessary condition for the minimizer u

$$\min_{u} \int_{\Omega} \alpha |\nabla u| + \frac{1}{2} (u - z)^2 \, dx$$

• Theory

$$-\alpha \nabla \cdot \left(\frac{\nabla u}{|\nabla u|}\right) + u - z = 0$$

- Degenerate nonlinear elliptic PDE when $|\nabla u| = 0$
- Practice

$$-\alpha \nabla \cdot \left(\frac{\nabla u}{\sqrt{|\nabla u|^2 + \beta}}\right) + u - z = 0$$

small
$$\beta > 0$$

Previous Work

$$-\alpha \nabla \cdot \left(\frac{\nabla u}{\sqrt{|\nabla u|^2 + \beta}}\right) + u - z = 0$$

Rudin-Osher-Fatemi 1992 Time marching to steady state with gradient descent. Improvement in Marquina-Osher 1999.

Chan-Chan-Zhou 1995 Continuation procedure on β .

Vogel-Oman 1996 Fixed point iteration.

Dependence on β

$$-\alpha \nabla \cdot \left(\frac{\nabla u}{\sqrt{|\nabla u|^2 + \beta}}\right) + u - z = 0$$
 (1)

 β large Smeared edges.

 β small PDE nearly degenerate.

No β if we rewrite (1) in terms of new variable...

Introduce Dual Variable w

Francfort/Chan-Golub-Mulet 1995 [CGM99] Giusti 1984 [Giu84]

Total Variation Integral

$$TV(u) = \int_{\Omega} |\nabla u| \, dx$$
$$= \sup \left\{ \int_{\Omega} u(\nabla \cdot \mathbf{w}) \, d\mathbf{x} : \mathbf{w} \in C_c^1(\Omega, \mathbb{R}^2), \ |\mathbf{w}(\mathbf{x})| \le 1 \, \forall \mathbf{x} \in \Omega \right\}$$

• $C_c^1(\Omega, \mathbb{R}^2)$ is the set of functions with continuous first derivatives and compact support on Ω .

Dot Product

$$a \cdot b = |a||b|\cos\theta$$

$$\max_{|b| \le 1} a \cdot b = \max_{|b| \le 1} |a| |b| \cos \theta$$

$$\cos \theta = 1 \Longleftrightarrow \theta = 0$$

 $\Rightarrow b$ coincident with a

$$\Rightarrow b = \frac{a}{\|a\|}$$

$$\max_{|b| \le 1} a \cdot b = ||a||$$

Intuition Behind Dual Variable w

$$|\nabla u| = \max_{|w| \le 1} (\nabla u \cdot w) \, \Big|$$

Interpretation

$$w = \begin{cases} \frac{\nabla u}{|\nabla u|} & u \text{ smooth and } |\nabla u| \neq 0\\ \text{not unique} & \text{otherwise} \end{cases}$$

Deriving Dual Formulation

$$\left| \min_{u} \int_{\Omega} \alpha |\nabla u| + \frac{1}{2} (u - z)^{2} dx \right|$$

• Dual definition of Total Variation

$$= \min_{u} \int_{\Omega} \alpha \max_{|w| \le 1} -u(\nabla \cdot w) + \frac{1}{2}(u-z)^{2} dx$$

• Interchange max and min

$$= \max_{|w| \le 1} \min_{u} \underbrace{\int_{\Omega} -\alpha \, u(\nabla \cdot w) + \frac{1}{2} (u-z)^2 \, dx}_{\Psi(u)}$$

• Quadratic function of u

$$\nabla \Psi(u) = \vec{0} \iff u = z + \alpha (\nabla \cdot w)$$

Deriving Dual Formulation

• Write u in terms of w

$$\max_{|w| \le 1} \int_{\Omega} -\alpha \underbrace{(z + \alpha(\nabla \cdot w))}_{u} (\nabla \cdot w) + \frac{1}{2} \underbrace{(z + \alpha(\nabla \cdot w) - z)^{2}}_{u} dx$$

• Dual max problem

$$\max_{|w| \le 1} \int_{\Omega} -\alpha z (\nabla \cdot w) - \frac{\alpha^2}{2} (\nabla \cdot w)^2 dx$$

Deriving Dual Formulation

• Dual max problem

$$\max_{|w| \le 1} \int_{\Omega} -\alpha z (\nabla \cdot w) - \frac{\alpha^2}{2} (\nabla \cdot w)^2 dx$$

• Dual min problem

$$-\min_{|w| \le 1} \int_{\Omega} \alpha z (\nabla \cdot w) + \frac{\alpha^2}{2} (\nabla \cdot w)^2 dx$$

• Standard form

$$\min_{|w| \le 1} \int_{\Omega} z(\nabla \cdot w) + \frac{\alpha^2}{2} (\nabla \cdot w)^2 dx$$

Dual Total Variation Regularization

$$\min_{|w| \le 1} \int_{\Omega} z(\nabla \cdot w) + \frac{\alpha^2}{2} (\nabla \cdot w)^2 dx$$

Advantages

- Quadratic objective function in $(\nabla \cdot w)$
- No need for perturbation parameter β
- $u = z + \alpha(\nabla \cdot w)$
- -w unique at edges
- w not unique at flat regions but no information lost

• Disadvantages

- Constrained optimization problem in w
- One constraint per pixel

Outline

- 1. Edges in image processing
- 2. Insufficiency of classical tools
- 3. Total Variation (TV) model of Rudin-Osher-Fatemi
 - (a) Variational methods
 - i. [BHKU02] Short course on variational methods
 - ii. Total variation (TV) regularization
- 4. Computational challenges of primal TV
- 5. Dual TV method
 - (a) Derivation of problem
 - (b) Previous and current work
- 6. Acknowledgments

Previous Work on Dual TV [CGM99]

$$-\alpha \nabla \cdot \left(\frac{\nabla u}{\sqrt{|\nabla u|^2 + \beta}}\right) + u - z = 0$$
 (2)

• Difficulty is the linearization of the highly nonlinear term

$$-\nabla \cdot \left(\frac{\nabla u}{\sqrt{|\nabla u|^2 + \beta}}\right)$$

• Introduce

$$w = \frac{\nabla u}{\sqrt{|\nabla u|^2 + \beta}}$$

• Replace (2) by equivalent system of nonlinear PDEs:

$$-\alpha \nabla \cdot w + u - z = 0$$
$$w\sqrt{|\nabla u|^2 + \beta} - \nabla u = 0$$

• Linearize this (u, w) system by Newton's method.

Previous Work on Dual TV [Cha04]

$$\min_{|w| \le 1} \int_{\Omega} z(\nabla \cdot w) + \frac{\alpha^2}{2} (\nabla \cdot w)^2 dx$$

$$u = z + \alpha(\nabla \cdot w)$$

• For an $N \times N$ image

$$-\alpha(\nabla \cdot w) = \min\{\|\alpha \text{div } w - z\|^2 : |w_{ij}|^2 - 1 \le 0 \,\forall i, j = 1, \dots, N\}$$

• Karush-Kuhn-Tucker conditions provide explicit expression for Lagrange multiplier $\lambda_{ij} \geq 0$.

$$\lambda_{ij} = |(\nabla(\alpha \operatorname{div} w - z))_{ij}|$$

• Semi-implicit gradient descent algorithm.

$$w_{ij}^{n+1} = w_{ij}^{n} + \tau \left(\left(\nabla \left(\operatorname{div} w^{n} - \frac{z}{\alpha} \right) \right)_{ij} - \left| \left(\nabla \left(\operatorname{div} w^{n} - \frac{z}{\alpha} \right) \right)_{ij} \right| w_{ij}^{n+1} \right)$$
(3)

• Converges for $\tau \leq \frac{1}{8}$.

Current Work on Dual TV C.-Chan-Vandenberghe (in progress)

1D:

$$\left| \min_{|w| \le 1} \int_{\Omega} z \frac{dw}{dx} + \frac{\alpha}{2} \left(\frac{dw}{dx} \right)^2 dx \right|$$

Nonlinear Gauss-Seidel algorithm with projection.

2D:

$$\min_{\|\mathbf{w}\|_{\infty} \le 1} \int_{\Omega} z(\nabla \cdot \mathbf{w}) + \frac{\alpha}{2} (\nabla \cdot \mathbf{w})^2 d\mathbf{x}$$

Linear algebra structure of [CGM99] applied to Newton equations of interior-point method.

References

- [AK02] Gilles Aubert and Pierre Kornprobst. Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, volume 147 of Applied Mathematical Sciences. Springer, 2002.
- [BHKU02] A. Ben Hamza, Hamid Krim, and Gozde B. Unal. Unifying probabilistic and variational estimation. *IEEE Signal Processing Magazine*, pages 37–47, 2002.
- [BT89] Dimitri P. Bertsekas and John N. Tsitsiklis. *Parallel* and *Distributed Computation: Numerical Methods*.

 Prentice Hall, 1989.
- [BV04] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
- [Car01] Jamylle Laurice Carter. Dual Methods for Total

Variation-Based Image Restoration. PhD thesis, University of California, Los Angeles, 2001.

[CGM99] Tony F. Chan, Gene H. Golub, and Pep Mulet. A nonlinear primal-dual method for total variation-based image restoration. SIAM Journal on Scientific Computing, 20(6):1964–1977, 1999.

[Cha04] Antonin Chambolle. An algorithm for total variation minimization and applications. *Journal of Mathematical Imaging and Vision*, 20:89–97, 2004.

[CP04] P.L. Combettes and J.-C. Pesquet. Image restoration subject to a total variation constraint. *IEEE Transactions on Image Processing*, 13(9):1213–1222, September 2004.

[DV97] David C. Dobson and Curtis R. Vogel. Convergence of an iterative method for total variation denoising. *SIAM* Journal on Numerical Analysis, 34(5):1779–1791, 1997.

[Giu84] Enrico Giusti. Minimal surfaces and functions of bounded variation. Birkhäuser, 1984.

[GS00] L. Grippo and M. Sciandrone. On the Convergence of the Block Nonlinear Gauss-Seidel Method Under Convex Constraints. *Operations Research Letters*, 26(3):127–136, April 2000.

[Lan70] Cornelius Lanczos. The Variational Principles of Mechanics. University of Toronto, fourth edition, 1970.

[Mal02] F. Malgouyres. Minimizing the total variation under a general convex constraint for image restoration. *IEEE Transactions on Image Processing*, 11(12):1450–1456, December 2002.

[OSV03] Stanley Osher, Andres Sole, and Luminita Vese. Image decomposition and restoration using total variation

minimization and the h^{-1} norm. Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, $1(3):349-370,\ 2003.$

- [Roc70] R. Tyrrell Rockafellar. Convex Analysis. Princeton University Press, 1970.
- [ROF92] Leonid I. Rudin, Stanley J. Osher, and Emad Fatemi. Nonlinear total variation based noise removal algorithms. *Physica D*, 60:259–268, 1992.
- [Wit83] A.P. Witkin. Scale space filtering. In A. Bundy, editor, Proceedings of the 8th International Joint Conference on Artificial Intelligence, pages 1019–1023, 1983.