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Saturated Nonlinear Schrödinger Equations

◮ The Focusing Saturated NLS Problem:

{

iut + ∆u + β(|u|2)u = 0, u : R
d × R → R

u(0, x) = u0(x), u0 : R
d → R.

◮ The structure of β:

β(s) = s
p−1

2
s

q−p
2

1 + s
q−p

2

,

where q > 2 + 2
d and 1 + 4

d > p > 1 for d ≥ 3 and
∞ > q > 1 + 4

d > p > 1 for d < 3.
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Saturated Nonlinear Schrödinger Equations
Cont.

◮ We also allow for the following perturbations of the
cubic nonlinearity

β(s) =
s

〈s〉1− p−1
2

,

where < x >= (1 + x2)
1
2 is the standard Japanese

bracket and 1 + 4
d > p > 1 as above.

◮ Description of phenomenon:
For |u| ≫ 1, the behavior is known as L2

SUB-CRITICAL.
For |u| ≪ 1, the behavior is known as L2

SUPER-CRITICAL.
◮ Criticality deals with the scale invariance in the

typical monomial nonlinearity studied widely in the
literature

β(s2) = sp−1.
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Motivation
◮ Saturated nonlinearities have applications to

describing the dielectric constant of gas vapors
where a laser beam propagates, laser beams in
plasmas and Bose superfluids at zero temperatures.

◮ Mathematically, the author’s interest in saturated
nonlinearities arose out of the work of
Rodnianski-Schlag-Soffer, who prove asymptotic
stability for a collection of N solitons under various
separation conditions for

β(s) = s
p−1

2
s

q−p
2

ǫ+ s
q−p

2

,

where ǫ small. As ǫ→ 0, this system approaches the
standard sub-critical monomial nonlinearity.

◮ Note this is equivalent to the β presented above
using a rescaling

u(t , x) → γ
2
q v(γ2t , γx).
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Conserved Quantities
◮ Conservation of Mass:

Q(u) =
1
2

∫

Rd
|u|2dx =

1
2

∫

Rd
|u0|

2dx .

◮ Conservation of Energy:

E(u) =

∫

Rd
|∇u|2dx −

∫

Rd
G(|u|2)dx

=

∫

Rd
|∇u0|

2dx −

∫

Rd
G(|u0|

2)dx ,

where

G(t) =

∫ t

0
β(s)ds.
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Soliton Solutions

◮ Equation:
Plugging in the ansatz u = eiλ2tϕλ(x), we have:

∆ϕλ − λ2ϕλ + β(ϕ2
λ)ϕλ = 0.

◮ Description of the Solution:
The unique soliton solution ϕ is positive, radially
symmetric, at least C2 (which gives far better
regularity through standard elliptic estimates), and
exponentially decaying.

◮ The soliton curve:
Set Q(λ) = Q(ϕλ), E(λ) = E(ϕλ). A variational
argument shows that ∂λQ = −λ∂λE . Stability theory
for solitons depends heavily upon the sign of ∂λQ.
For monomial nonlinearities, this is done by scaling.
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Soliton Solution.

◮
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Figure: A plot of a soliton.
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Soliton Solutions Cont.
◮ Q(λ) and E(λ) are C1.
◮ A numerical plot shows a curve for a saturated

nonlinearity:

$.5$

E(λ)
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Figure: A sample soliton curve.

◮ Say the minimal mass soliton occurs at λ0.
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Soliton Stability.

◮ From the works of Weinstein, Shatah, and
Grillakis-Shatah-Strauss, we know that if

∂λQ(λ) > 0, (< 0)

the solitons are orbitally stable (unstable) under
small perturbations.

◮ For the minimal mass soliton, we are at the
intersection of these regimes. From the work of
Comech-Pelinovsky, we know that the minimal mass
soliton is unstable under general perturbations.
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Orbital Stability

◮ A soliton ϕ is orbitally stable if for any ǫ > 0, there
exists δ > 0 such that if the initial condition u0 is such
that

inf
θ,y

‖u0(x) − eiθϕ(x + y)‖H1(x) < δ,

then the solution u(x , t) of NLS satisfies

inf
θ,y

‖u(x , t) − eiθϕ(x + y)‖H1(x) < ǫ.
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Linearized Hamiltonian

◮ Solution:
Set λ = 1. We take a solution of the form
u(x , t) = eit(ϕ(x) + R(x , t)).

◮ The equation for R = v1 + iv2:

iRt + ∆R = −β(|ϕ|2)Im(R)

− 2β′(|ϕ|2)ϕ2Re(R) + O(R2),

by splitting R up into its real and imaginary parts,
then doing a Taylor Expansion.
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Linearized Hamiltonian Cont.
◮ Hence, we have

i∂t

(

v1

v2

)

= H

(

v1

v2

)

.

◮ Above,

H =

(

0 iL−

−iL+ 0

)

,

where

L− = −∆ + λ− β(ϕ2
λ)

and

L+ = −∆ + λ− β(ϕ2
λ) − 2β′(ϕ2

λ)ϕ
2
λ.
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Spectral Properties of L+, L−.

◮ L+, L− are self-adjoint operators.
◮ L− ≥ 0.
◮ There exists one simple, negative eigenvalue for L+.
◮ The continuous spectrum of L−, L+ is (λ2,∞).
◮ The null space of L− is spanned by ϕλ.
◮ The null space of L+ is spanned by ∂jϕλ for

j = 1, ...,d .



Stable
Perturbations

Jeremy Marzuola

Preliminaries

Solitons

Stability

Linearization

Spectral Theory

Estimates

Main Result

Summary

Spectral Properties of L+, L−.

◮ L+, L− are self-adjoint operators.
◮ L− ≥ 0.
◮ There exists one simple, negative eigenvalue for L+.
◮ The continuous spectrum of L−, L+ is (λ2,∞).
◮ The null space of L− is spanned by ϕλ.
◮ The null space of L+ is spanned by ∂jϕλ for

j = 1, ...,d .



Stable
Perturbations

Jeremy Marzuola

Preliminaries

Solitons

Stability

Linearization

Spectral Theory

Estimates

Main Result

Summary

Spectral Properties of L+, L−.

◮ L+, L− are self-adjoint operators.
◮ L− ≥ 0.
◮ There exists one simple, negative eigenvalue for L+.
◮ The continuous spectrum of L−, L+ is (λ2,∞).
◮ The null space of L− is spanned by ϕλ.
◮ The null space of L+ is spanned by ∂jϕλ for

j = 1, ...,d .



Stable
Perturbations

Jeremy Marzuola

Preliminaries

Solitons

Stability

Linearization

Spectral Theory

Estimates

Main Result

Summary

Spectral Properties of L+, L−.

◮ L+, L− are self-adjoint operators.
◮ L− ≥ 0.
◮ There exists one simple, negative eigenvalue for L+.
◮ The continuous spectrum of L−, L+ is (λ2,∞).
◮ The null space of L− is spanned by ϕλ.
◮ The null space of L+ is spanned by ∂jϕλ for

j = 1, ...,d .



Stable
Perturbations

Jeremy Marzuola

Preliminaries

Solitons

Stability

Linearization

Spectral Theory

Estimates

Main Result

Summary

Spectral Properties of L+, L−.

◮ L+, L− are self-adjoint operators.
◮ L− ≥ 0.
◮ There exists one simple, negative eigenvalue for L+.
◮ The continuous spectrum of L−, L+ is (λ2,∞).
◮ The null space of L− is spanned by ϕλ.
◮ The null space of L+ is spanned by ∂jϕλ for

j = 1, ...,d .



Stable
Perturbations

Jeremy Marzuola

Preliminaries

Solitons

Stability

Linearization

Spectral Theory

Estimates

Main Result

Summary

Spectral Properties of L+, L−.

◮ L+, L− are self-adjoint operators.
◮ L− ≥ 0.
◮ There exists one simple, negative eigenvalue for L+.
◮ The continuous spectrum of L−, L+ is (λ2,∞).
◮ The null space of L− is spanned by ϕλ.
◮ The null space of L+ is spanned by ∂jϕλ for

j = 1, ...,d .



Stable
Perturbations

Jeremy Marzuola

Preliminaries

Solitons

Stability

Linearization

Spectral Theory

Estimates

Main Result

Summary

Spectral Properties of H.

◮ The generalized null space is at least of order 2. To
see this, look at ∂λϕλ. We have L+∂λϕλ = 2ϕλ.
Hence, L−L+∂λϕλ = 0.

◮ At a minimal mass soliton, the generalized null space
is of order 4.

◮ An embedded resonance is in fact an embedded
eigenvalue.

◮ The continuous spectrum of H is
(−∞,−λ2) ∪ (λ2,∞).

◮ Theorem
There are no large embedded eigenvalues for H.

Theorem
There are a finite number of allowed spherical harmonics
in an expansion for an embedded eigenvalue.
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Spectral Assumptions on H.

◮ There are no embedded eigenvalues.
◮ For Hλ0 , the only real eigenvalue in [−λ2, λ2] is 0.
◮ There are no resonances at ±λ2.
◮ Note that we have designed numerical experiments

that will allow us to test these assumptions in the
limited range they apply.

◮ We say that an H satisfying all of the above
conditions is admissible.
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◮ For Hλ0 , the only real eigenvalue in [−λ2, λ2] is 0.
◮ There are no resonances at ±λ2.
◮ Note that we have designed numerical experiments

that will allow us to test these assumptions in the
limited range they apply.

◮ We say that an H satisfying all of the above
conditions is admissible.
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Dispersive Estimates for H.

◮ Theorem (Schlag-Erdogan,Bourgain)

‖eitHPcϕ‖H1 ≤ C‖ϕ‖H1

‖eitH(Pcϕ)‖Hs ≤ C‖ϕ‖Hs

‖eitH(Pdϕ)‖Hs ≤ C(1 + |t |3)
∫

e−c|x||ϕ(x)|dx

‖eitH(Pcϕ)‖L2 ≤ C(‖|x |αϕ‖L2 + (1 + |t |α)‖ϕ‖Hα

‖eitH(Pdϕ)‖L2 ≤ C(1 + |t |3)
∫

|ϕ|e−c|x|dx ,

◮ We will assume far less regularity and hence use
very weak versions of the above estimates.
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Main Theorem

◮ Theorem
Given the equation in

{

iut + ∆u + β(|u|2)u = 0, u : R × R
3 → C

u(0, x) = u0(x), u0 : R
3 → C

(1)

where β is an admissible saturated nonlinearity, there
exists a codimension 10(*) (at most) manifold M
embedded in function space Σ, such that given ψ ∈ M,
Eqn. (1) has a solution of the form
u(x , t) = ϕλ0 + eiHtψ + w(x , t), where w(x , t) → 0 as
t → ∞ uniformly in x.

◮ * This is work in progress, but the general idea is that
most of the functions in the generalized null space
will still produce stable perturbations.
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Construction of M and Σ.

◮ To begin, for simplicity assume λ0 = 1. Using an
argument similar to that of Bourgain-Wang, we look
for solutions of the form

u(x , t) = eixtϕ+ zψ + w(x , t),

where zψ = eiHtψ.
◮ Note that Bourgain-Wang used zψ a solution to the

critical (monomial) nonlinear problem in dimensions
d = 1,2 to look at stable perturbations of a blow-up
solution via the pseudoconformal transform.

◮ It is also possible, with restrictions similar to those of
B-W to build a solution for zψ = ei∆tψ.
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Construction of M and Σ cont.

◮ To build solutions of this type, we build a contraction
map backwards from ∞.

◮ Note that if we can show w is small, then we can say
that the map Ψ : ψ → w(t0) is Lipschitz and hence,
we have a smooth, finite codimension manifold of
perturbations. The codimension will be at most
2d + 4 since H1 × H1 = Ng(H) ⊕ {Ng(H∗)}⊥ and
Ng(H) = 2d + 4. However, in the spirit of Schlag,
Krieger-Schlag, the null space functions up to order
2 should not effect the convergence. Hence, the
manifold should be of codimension 2.
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Linearization scheme.

◮ Let v0 = zϕe−it . Then, we set

f0 = β(|ϕ + v0|
2)(ϕ + v0) − β(ϕ2)ϕ

− (β(ϕ2) + β′(ϕ2)ϕ2)v0 − β(ϕ2)ϕ2v̄0,

a = [β(|ϕ + v0|
2) + β′(|ϕ+ v0|

2)|ϕ+ v0|
2]

− [β(ϕ2) + β′(ϕ2)ϕ2],

b = β′(|ϕ+ v0|
2)(ϕ+ v0)

2

− β′(ϕ2)ϕ2,

G(w) = β(|ϕ + v0 + w |2)(ϕ+ v0 + w)

− β(|ϕ + v0|
2)(ϕ + v0)

− [β(|ϕ + v0|
2) + β′(|ϕ+ v0|

2)|ϕ+ v0|
2]w

− β′(|ϕ+ v0|
2)(ϕ+ v0)

2w̄ .
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Linearization scheme cont.

◮ Under the smoothness assumptions on β, we have

f0 = O(|v0|
2),

a = O(|v0|),

b = O(|v0|),

G(w) = O(|w |2).

◮ Then, we have

−iwt = ∆w − w + (β(ϕ2) + β′(ϕ2)ϕ2)w

+ β′(ϕ2)ϕ2w̄ + f0 + aw + bw̄ + G(w).
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Integral equation for w .

◮ In other words, we have

iwt + Hw + aw + bw̄ + f0 + G(w) = 0.

We have G to be at least quadratic in w .
◮ Using the integral formulation of the equation for w

w(t) = −i
∫ ∞

t
ei(τ−t)HPc[f0 + aw + bw̄ + G(w)]dτ

+ −i
∫ ∞

t
ei(τ−t)HPd [f0 + aw + bw̄ + G(w)]dτ,

where Pc projects onto the continuous part of the
spectrum and Pd projects onto the discrete part of
the spectrum.
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Existence proof for w .

◮ Assume that ‖w‖L2 ≤ t−N for N large.
◮ Make the assumption ψ ∈ M, which gives sufficient

decay in t for z. Most of this argument will involve
standard scattering theory techniques, but applied to
a nonselfadjoint operator.

◮ Prove the existence of w through a bootstrapping
argument.
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Distorted Fourier Basis.
◮ There exists a distorted Fourier basis, uξ0 for H

which gives a unique representation for the
continuous spectrum.

◮ uξ0 is a solution to the equation

[L+L−]uξ0 = (λ2 + ξ2
0)2uξ0 .

◮ For each ξ0, uξ0 is of the form

uξ0 = eix·ξ0 + fξ0 ,

where fξ0 ∈ C∞ ∩ Lp, p ≥ 4 and

fξ0 ∼
cos(|x ||ξ0|)

|x |

as x → ∞.
◮ fξ0 is uniformly bounded and differentiable in ξ0.
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Time Decay.

◮ For the linear Schrödinger operator, we can build
solutions with better time decay simply by making the
assumption on the initial data u0 that

∫

Rd
xαu0 = 0,

for some multi-index α. We then have

‖ei∆tu0‖L∞ ≤ t−
d+2|α|

2 .
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Time Decay cont.

◮ For the linearized matrix Schrödinger operator, from
Erdogan-Schlag, we have the standard spectral
decomposition from Stone’s formula and nice
dispersive estimates. We can build solutions with
better time decay by using the fact that along the
continuous spectrum, there is a representation

PcHf = F̃−1|ξ|2F̃ f ,

where F̃ is the Fourier transform with respect to the
distorted basis uξ0.

◮

F̃−1 = C · F̃∗

◮ F̃ , F̃−1 are L2 bounded operators.
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Time Decay cont.

◮ We then have

〈eiHtPcf ,g〉 = eit
∫

eitξ2
〈f ,uξ〉〈g, ũξ〉dξ,

on which we can carefully use stationary phase,
nonstationary phase and duality arguments to get
time decay. It is here that we must put enough
regularity and decay at ∞ on Σ in order to get time
decay. This is very similar to the development of
Krieger-Schlag in R × R using Wronskian methods to
construct the distorted Fourier basis and prove the
spectral decomposition.

◮ Note that a similar and far more well-known
approach could be taken for the linear Schrödinger,
but the exact formula provides us with a more
definitive solution.
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Conclusion

◮ Despite the fact that the linearized operator is
nonselfadjoint, at the minimal mass soliton standard
scattering theory techiniques apply and hence stable
perturbations can be constructed.

◮ Along the way to constructing this class, we have
extensively studied the spectrum of the linearized
operator and constructed bounds for embedded
eigenvalues.

◮ This result distinctly depends upon the smoothness
of the nonlinearity.



Stable
Perturbations

Jeremy Marzuola

Preliminaries

Solitons

Stability

Linearization

Spectral Theory

Estimates

Main Result

Summary

Conclusion

◮ Despite the fact that the linearized operator is
nonselfadjoint, at the minimal mass soliton standard
scattering theory techiniques apply and hence stable
perturbations can be constructed.

◮ Along the way to constructing this class, we have
extensively studied the spectrum of the linearized
operator and constructed bounds for embedded
eigenvalues.

◮ This result distinctly depends upon the smoothness
of the nonlinearity.



Stable
Perturbations

Jeremy Marzuola

Preliminaries

Solitons

Stability

Linearization

Spectral Theory

Estimates

Main Result

Summary

Conclusion

◮ Despite the fact that the linearized operator is
nonselfadjoint, at the minimal mass soliton standard
scattering theory techiniques apply and hence stable
perturbations can be constructed.

◮ Along the way to constructing this class, we have
extensively studied the spectrum of the linearized
operator and constructed bounds for embedded
eigenvalues.

◮ This result distinctly depends upon the smoothness
of the nonlinearity.



Stable
Perturbations

Jeremy Marzuola

Preliminaries

Solitons

Stability

Linearization

Spectral Theory

Estimates

Main Result

Summary

Future Work

◮ The proof that the perturbations exist is fairly well
established, but proving that those perturbations live
on a manifold with reduced codimension is work in
progress. The calculations depend upon the
dimension and the “supercritical power” of the
saturated nonlinearity.

◮ Analysis which describes the soliton curve for small
values of λ and looks at dispersion below the minimal
mass soliton is future work underway with Justin
Holmer, Jason Metcalfe and Svetlana Roudenko.

◮ Studying the necessity of the smoothness condition
on the nonlinearity both analytically and numerically
is work in progress also with Justin Holmer.

◮ Studying the dynamics of interactions with minimal
mass solitons could lead to interesting annihilation
effects.
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