Introductory Workshop on Combinatorial
Representation Theory

Combinatorics of Lie Type - Arun Ram - 1/22/08

This is the first in a series of 3 lectures on the subject. The lecture topics will be as follows:
Lecture 1. (a) Symmetric Functions, (b) Hecke Algebras & (c) Macdonald Polynomials

Lecture 2. - (a) Groups of Lie Type (b) Loop Groups & (c) Flag Varieties
(here we’ll get a special look at affinization)

Lecture 3. - (a) Tableaux (b) Path Models & (c) Crystals

Reflection Groups (over O =Z OR Z, OR Z[¢])
Let F be the fraction field of O and suppose that F C C

Definition - Let § be a vector space, then a reflection is a linear transformation s € GL(h) s.t.
k(1 —s)=1.

Remark - Morally, this means that we want s to be conjugate to a matrix of the form

£
1

in GL(br)

Definition - A reflection group is a pair (ho, Wy) where ho is a free O-module and Wy is a subgroup
of GL{he) that is generated by reflections.

Recall, the affine Weyl group is the semidirect product W = fo x Wy = {tyvw|AY € ho,w € Wy}
where tyvt,v = tyvy,v and wiyv = tyav. (W is the finite Weyl group)

If we take h = span{y1, ..., Yn}, then recall S(h*) = C[z1, ..., z,] and Wy acts on these polynomials.
We then get the symmetric functions C[z1, ...z, ]V = {f € Clzy, ..., z,]|wf = [ Yw € W},

Theorem 1 (Shephard-Todd-Chevalley)

Assume Wy is finite, then the pair (h, Wy) is a reflection group iff

3 p1, ..., pn homogenous polynomials s.t. Clz1, ..., 2,)"° = Clp1, ..., pnl-

(i.e. the Wy invariant polynomials, can actually be written as a polynomial ring over algebraically
independent homogeneous polynomials.)

This is, in fact, a very rigid structure which causes much of the cohomology to vanish.



Examples
Type GL, - Recall in this case the Weyl group is Wy = S, and it acts on hz = Z-span{yi, ..., Yn}
by permuting y1, ..., Yn.

Type SL3 - Here the Weyl group is Wy =< 51,.92|si2 =1, 818281 = $98189 >.

Our lattice is hZ = Z-span{ay, oy }

We can draw a nice diagram of the lattice, the hyperplane arrangements, and the way in which the
Weyl group permutes the chambers formed by the hyperplanes (see Figure 1 attached).

Now, we will change gears and discuss the affine Weyl group. Recall W = {tyvw|\Y € o, w € Wp}.
So every element is indexed by an element of the finite Weyl group (w) and an element in the lattice
(tav). Hence, in our nice case, (see Figure 2) we can in effect tile all of affine space with copies of
the fundamental chamber by allowing the finite Weyl group to act (with its normal reflections) and
by allowing shifts by the lattice points. (We get a copy of the finite Weyl group centered at each
lattice point)

In these lucky cases, (i.e. SLs and affine SL3) the Dynkin diagram is actually the dual graph (I, E)
of the fundamental chamber. (see Diagrams below)
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Furthermore, by adding the labels to the edges of the Dynkin diagrams we can keep track of
the angles. This extra information also tells us about the relations in Wy. Namely, if we label the
edge connecting ¢ and j by the number m;; then we get the following presentation for Wy.

Wo =< s; | sf =1, 8;8j8i... = §;5;5;... > where each product has exactly m;; terms.

The DAHA: The Double Affine Hecke Algebra

Let X = {¢*X*|k € Z, p € b}} with ¢X* = X#q and X*X? = XFT7,

Now the affine Weyl group W acts on X via wX* = X"H¥, wq = ¢, and t)v X* = q_<)‘v’“>X“

If we fix parameters ti1 /2 for i = 1,...,n in the base field (so they commute with all of the generators)
the we can define the DAHA (H) as follows:

H is generated by Ty, ...T,,, X where T? = (til/2 — t;1/2)Ti +1

and T;T;T;... = T;T;T;... when each of these products has m;; factors.

Now define X*# = T,X*T, ! if < p,af >= 0 and X%# = T,XHT; if < p,af >=1
(Recall, the inner product < AV, u >= u(\Y) comes from the pairing of § and §*. In this case, it
is measuring the distance from g to the hyperplane h®:.)

Dunkl-Cherednik Operators

We can form a specific basis for H assuming that the parameters {f;} are in C already. Then
H = C[qil]—span{X“Twm € by, we W} where T,, = T;, .. T;, whenever w = s;,...s;, is a minimal
length walk to w.




Let’s now contrast the above work with the (Single) Affine Hecke Algebra (AHA).
H = span{Ty, |w € W} We can actually write down another presentation,

H = span{Y ' T,,|w € Wo, \Y € hz}. - g+
1 if the kth step is __J ,

Then YA’ = fl”fll...Tfl' where €, = o
—1 if the kth step is

Signs in the steps come from orienting all of the hyperplanes so that the fundamental chamber gets
all +’s and then extending so that all parallel hyperplanes get the same orientation (see Figure 3).

Then notice we get that yNyr =y =yl y A they commute!

So we now have H = C[¢™]-span{X*Ty|u € b3, w € W} and contained inside H we have
H = span{Y* T, |lw € Wy, \Y € hz}.

Definition - the polynomial representation (denoted 1) is defined by the action T;1 = tl/ %1 for
1=0,..,n

So notice that, H1 = Clg*!|-span{X*1|u € hz}. They look like polynomials! Can we find the
eigenvalues?

The Dunkl-Cherednik Operators (the YA as operators on X*) are actually the integrals for the
system of differential equations above.

Macdonald Polynomials
Definition - The non-symmetric Macdonald polynomials are E,,, the eigenvectors of Y acting
on H1.

There are symmetric versions of these polynomials also.

Let 1041 = {pl|wp = p for w € Wy} (these are all symmetric polynomials).

Then take myv = Z Y?”. These are the monomial symmetric functions.
YV EeWpAY

Definition - the Macdonald polynomials are P,(q,t1,...,t,) (or just P,), the eigenvectors of myv
acting on 10H1.

Now, recall that eigenvectors are only unique up to scaling. Hence, if we want unique polynomials

we need to normalize them.
Take F, = X* 4 lower terms and P, = X* + lower terms

Once we have these two sets of polynomials, some natural questions arise:
QUESTIONS

(1) Can we expand the F, in terms of X*7

(2) Can we expand the P, in terms of m,?

(3) Can we expand the P, in terms of the Schur functions s,?

In type GL, these questions have been answered by recent work: (1) by HHL IT , (2) by HHL I,
(3) by Assaf.



Hall-Littlewood Polynomials
These appear in the special case of P,(q,t1,...,t,) when we take g =0 and { =3 = to = ... = .

Definition - A positively folded alcove walk is a sequence of steps, where a step of type j is a step

of the form i 3

4% o k{, oF. Xﬁ

where j labels the family of hyperplane that is being crossed.

Let A € (b%)*, and let tyv = sj,...5; be a reduced word. Then there is a nice result due to C.
Schwer.

Theorem 2 (C. Schwer)

Py(0,) = Z (1 — )7 @z LEEN+(S(R)—f )] x i)
PEB:(A)

where Bi(\) = {positively folded alcove walks of type i1, ...,%; beginning in the 0-hexagon}
i(p) is the initial position of p, ¢(p) is the final position of p,
f(p) is the number of folds in p, and wt(p) (the 'weight’ of p) is the final hexagon of p

Closing Remark: The Littelmann paths are the elements of the set
B(X) = {p € B:(M\)|l(i(p)) + (¢(p)) — f(p) = 0}. These paths form a nice crystal. You can also see
B(A) appearing with Schur functions as sy = Z Xwtp),

pEB(N)
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