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Introduction

Parameter spaces of Coxeter groups

(W, S ): Coxeter system (S : generator set)

Coxter diagram (nodes = S , edges = ”braid rel.”);

Equiv. relation ∼ on S defined by s ∼ s′ ⇔ s ∈ Ad(W)s′;

Artin braid group B(W,S ) (generated by {Ts}s∈S , surjects to W).

The parameter space of (W, S ) is:

P(W,S ) := SpecA(W,S ) � (C×)#(S/∼),

where
A = A(W,S ) := C[t±1

s ; s ∈ S ]/
〈
(ts − ts′); s ∼ s′

〉
.
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Introduction

Hecke algebra attached to (W, S )

The Hecke algebra H = H(W,S ) of (W, S ) is:

H(W,S ) := A(W,S )[B(W,S )]/HR,

where HR is the two-sided ideal generated by

(Hecke Relation) (Ts + 1)(Ts − ts) for s ∈ S .

H/(ts ≡ 1) � C[W] Group ring of W;

H1 := H/ 〈ts − t〉 Iwahori-Hecke algebra;

Hn⃗ := H/ 〈ts − tns〉 Lusztig’s Hecke algebra with unequal params.
(for each n⃗ = (ns)s ∈ ZS )
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Introduction

Affine Hecke algebras

Affine Hecke algebras = Hecke algebras of affine Coxeter groups.

.

Theorem (Classification of irred. affine Coxeter groups)

.

.

.

. ..

.

.

dimP
3 Cn

2 A1, Bn F4,G2

1 An (n ≥ 2),Dn E6, E7, E8

.

Theorem (Affine Hecke algebras of type ABC)

.

.

.

. ..

.

.

Affine Hecke algebras of type A1BC are specialization of type C (up to
extention of centers).
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Introduction

Representation theory of affine Hecke algebras of classical type

Previous observation and Clifford theory (cf. Ram-Ramagge) says:

.

Theorem

.

.

.

. ..

.

.

Representation theory of affine Hecke algebras of classical types are
completely determined by that of HCn .

.

Remark

.

.

.

. ..

.

.

Theorem is not known when restricted to Iwahori-Hecke algebras (H1).
(I expect that the result is in fact negative.)
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Introduction

Geometric Representation theory of affine Hecke algebras

Kazhdan-Lusztig version of Iwahori-Matsumoto theorem;

Deligne-Langlands-Lusztig conjecture;
Exotic version of Deligne-Langlands correspondence.

.

.
.

1 Realization of H1 in terms of affine flag variety;

.

.

.

2 Representations are given by the Kazhdan-Lusztig theory of “cells”;

.

.

.

3 Equivalence with the next one is the so-called geometric Satake
isomorphism.
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Introduction

Geometric Representation theory of affine Hecke algebras

Kazhdan-Lusztig version of Iwahori-Matsumoto theorem;
Deligne-Langlands-Lusztig conjecture;

Exotic version of Deligne-Langlands correspondence.
.

.
.

1 Realization of H1 in terms of the cotangent bundles of
finite-dimensional flag variety of dual type;

.

.

.

2 Representations are given by the Springer fibers;

.

.

.

3 A complete classification of irred. H1-modules to which t does not act
by a root of unity;

.

.

.

4 A refined version of the Deligne-Langlands classification of the
Iwahori-spherical dual of p-adic Chevalley group by the category
equivalence proved by Borel-Matsumoto.
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Introduction

Geometric Representation theory of affine Hecke algebras

Kazhdan-Lusztig version of Iwahori-Matsumoto theorem;
Deligne-Langlands-Lusztig conjecture;
Exotic version of Deligne-Langlands correspondence.

.

.
.

1 A realization HC in terms of certain vector bundles of
finite-dimensional flag varieties of type C;

.

.

.

2 Representations are given by the “exotic” Springer fibers;

.

.

.

3 A complete classification of irred. HC-modules to which {ts}s∈S does
not act by certain collection of singular values;

.

.

.

4 The name Deligne-Langlands refers to the fact that we do not need
Lusztig’s refinement.
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Introduction

Our goals

.

.
.

1 Present formulation/constructions involved in our exotic
Deligne-Langlands correspondence;

.

.

.

2 Compare with the (usual) Delgine-Langlands-Lusztig
conjecture at each step.
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Preparatory materials

Notation on algebraic groups

G = S p(2n,C) with its Borel B, and its maximal subtorus T

X∗(T )=
n⊕

i=1

Zϵi, char. lattice of T,

where ϵi is a basis such that

R = {±ϵi ± ϵ j} ∪ {±2ϵi} ⊃ {ϵi ± ϵ j}i< j ∪ {2ϵi} = R+.

W0 := NG(T )/T ∋ si ⇔ αi = ϵi − ϵi+1(i , n) or 2ϵn

Weyl group simple refl. simple roots of G
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Preparatory materials

Notation on representations

g = LieG : adjoint representation of G (highest weight 2ϵ1)

V1 := C2n : vector representation of G (highest weight ϵ1)

V2 := ∧2V1 : alternating representation of G (highest weight ϵ1 + ϵ2)

Vℓ := V⊕ℓ1 ⊕ V2 : ℓ-exotic representation (ℓ = 1, 2)

.

Lemma (Weight distribution of Vℓ)

.

.

.

. ..

.

.

We have the following correspondence:

Vℓ g

V1 ±ϵi ↔ ±2ϵi long roots
V2 ±ϵi ± ϵ j ↔ ±ϵi ± ϵ j short roots

Here we neglect weight zero part.
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Preparatory materials

The main point of the whole story

Regard V2 as an analogue of g

(in the Deligne-Langlands-Lusztig conjecture)

.

Remark

.

.

.

. ..

.

.

.

.

.

1 Vℓ admits an action of (ℓ + 1)-dimensional torus;

.

.

.

2 X∗(T ) is isomorphic to the coroot lattice of G;

.

.

.

3 Geometry is not symplectic, but Calabi-Yau.
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Preparatory materials

Additional notation

G := G × (C×)ℓ+1

g admits natural G-action for ℓ = 0;

Vℓ admits natural G-action.

g+ = Lie[B, B] : the nilradical of B;
V+ = V+ℓ := sum of T -eigensps. of Vℓ of weights Q>0R+.

(V+ does not contain 0-weight space)

T := G ×B g+ : cotangent bundle of G/B;
F = Fℓ := G ×B V+ℓ : its exotic analogue.

R(T ) ∋ eλ ⇔ Lλ ∈ PicG/B � PicT � PicF.
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Geometry of exotic nilcones

The scheme of Hilbert nullforms

N := {ξ ∈ g; P(v) = 0 for all P ∈ C[g]G
+ } = {ξ ∈ g; adgξ is nilpotent endo.}

the nilpotent cone of g.

.

Theorem (Basic properties)

.

.

.

. ..

.

.

The variety N is normal with G-action for ℓ = 0 (Kostant);

The set of G-orbits of N is parameterized by symbols (Lusztig);

The variety Nℓ is normal with G-action (Schwarz);

The set of G-orbits of N1 is parameterized by bi-partitions of n.
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Geometry of exotic nilcones

Steinberg-type varieties

.

Theorem (Springer-Hesselink)

.

.

.

. ..

.

.

The moment map µ : T −→ N is a resolution of singularity;

The natural map ν : F ∋ (gB, X) 7→ X ∈ N gives a resolution of
singularity of N.

We define
Z := T ×N T

(the Steinberg variety)

The cartesian product have two projections pi : Z −→ T (i = 1, 2)
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Geometry of exotic nilcones

Steinberg-type varieties

.

Theorem (Springer-Hesselink)

.

.

.

. ..

.

.

The moment map µ : T −→ N is a resolution of singularity;

The natural map ν : F ∋ (gB, X) 7→ X ∈ N gives a resolution of
singularity of N.

We define
Z = Zℓ := Fℓ ×Nℓ Fℓ, (Z = T ×N T )

(analogue of Steinberg variety and original)

pi : Z ∋ (g1B, g2B, X)→ (giB, X) ∈ F (i = 1, 2)

Syu Kato (MSRI/Kyoto U.) Representation theory of Hecke algebras Intro. to Program Spring/2008 13 / 28



Geometry of exotic nilcones

Reminder of the group action

For ℓ = 2, the varieties and maps

Z
p1,p2−→ F

ν−→ N

admits a natural G-action coming from

G × F ∋ (s, q0, q1, q2) × (gB,
X︷          ︸︸          ︷

X0 ⊕ X1 ⊕ X2)

7→ (sgB, q−1
0 sX0 ⊕ q−1

1 sX1 ⊕ q−1
2 sX2) ∈ F.

The cases ℓ = 1 and Z → T → N are similar.
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Realization of affine Hecke algebras

Convolusion construction of algebras

.

Theorem (Ginzburg)

.

.

.

. ..

.

.

The assignment

⋆ :KG(Z) ⊗ KG(T ) ∋ ([K], [E])

7→
∑
i≥0

(−1)i[Ri(p1)∗(K ⊗ p∗2E)] ∈ KG(T )

equip a unital ring structure of KG(Z) with a faithful representation KG(T ).

.

Remark

.

.

.

. ..

.

.

KG(Z) contains R(G) as its center. (tensor product)
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Realization of affine Hecke algebras

The Lusztig realization of H1

.

Theorem (Lusztig 1984)

.

.

.

. ..

.

.

We have an isomorphism

H1
�−→ C ⊗Z KG(Z),

where t = ts (s ∈ S ) is identified with the degree-one character q of

C× ↪→ G × (C×)0+1 = G.

.

Remark

.

.

.

. ..

.

.

.

.

.

1 Lusztig’s construction works for ALL (irreducible) affine Hecke
algebras by replacing G by adjoint semi-simple algebraic groups;

.

.

.

2 If we forget C×-action, we obtain Lusztig version of Springer
realization of C[W0].
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Realization of affine Hecke algebras

Exotic realization of affine Hecke algebras

.

Theorem (math.RT/0601155 (now revising), theorem A)

.

.

.

. ..

.

.

For ℓ = 2, we have an isomorphism

HCn

�−→ A ⊗R((C×)ℓ+1) KG(Z),

where the inclusion R((C×)ℓ+1) ↪→ A is given as:

q2 = t1 = t2 = · · · = tn−1

−q0q1 = tn, −q0/q1 = t0,

where qi are deg 1 chars of V1 ⊕ V1 ⊕ V2 and
0 1 2 n − 2 n − 1 n
◦ > ◦ ◦ ······ ◦ ◦ < ◦
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Realization of affine Hecke algebras

Comments on the proof

The proof is basically common between the caseZ (original case) and the
case Z (exotic case). (The point was to employ V2.)

KG(Z) =
〈
T g

i , e
λ; 1 ≤ i ≤ n

〉
;

Compute the action of T g
i on KG(F). Same as the “usual” one except

for i = n;

We have

T g
n eλ = (1 − q0eϵn)(1 − q1eϵn)

eλ − esnλ−2ϵn

1 − e−2ϵn
;

Identify KG(F) with the anti-spherical representation of H.
(cf. Macdonald’s recent book)
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Delingne-Langlands type correspondences

Rough idea of construction of representations

If E is a G-equivariant coherent sheaf on ν−1(O) for a G-orbit O ⊂ N, then

p1(p−1
2 (O)) ⊂ ν−1(O)

implies that KG(ν−1(O)) admits KG(Z)-module structure.

⇒ one hope to obtain enough KG(Z)-modules to classify irreducible
representations of KG(Z).

This is too naive to obtain a correct answer. It is a miracle that this naive
expectation works after taking a fixed point set by a suitable semi-simple
elements.
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Delingne-Langlands type correspondences

Bernstein center

.

Theorem (Bernstein-Lusztig)

.

.

.

. ..

.

.

The center of the algebra H is isomorphic to

A⊗Z R(G) � A(T )W0 .

.

Remark

.

.

.

. ..

.

.

1) H is a free Z(H)-module of rank (#W0)2;
2) This follows from “Bernstein presentation” of H.
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Delingne-Langlands type correspondences

Preparation for the statement

Put

q⃗ :=

(q0, q1, q2) (ℓ = 2, exotic case)

q (ℓ = 0, usual DLL case)

Semi-simple element a := (s, q⃗) ∈ G defines a character

a : R(G) ∋ [V] 7→ tr(a,V) ∈ C =: Ca

We define
Ha := Ca ⊗Z(H) H

and
G(a) := ZG(a)� Na = Na

2.

Similar consideration yields H1,a and G(a)� Na (for DLL conj).
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Delingne-Langlands type correspondences

Exotic Deligne-Langlands correspondence

.

Theorem (math.RT/0601155, revised version of Theorem E)

.

.

.

. ..

.

.

Let a := (s, q0, q1, q2) ∈ G be a semi-simple element s.t.:

q2 is not a root of unity of order ≤ 2n;

q0q±1 , qm
2 for some integer m s.t. |m| ≤ n.

Then we have
IrrepHa

1:1↔ G(a)\Na
2.

.

Remark

.

.

.

. ..

.

.

When the conditions holds, Na
2 is an affine space with finitely many

G(a)-orbits.
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Delingne-Langlands type correspondences

Comments on the statement

We have HCn/(q0 + q1) � ĤBn . This gives

−1, or − q2
0 = q0q±1 , qm

2

as the coverage of the theorem.
I.e. our theorem covers Hn⃗ of type B or C (if |t| , 1).

Putting ti = t does not imply Kazhdan-Lusztig theorem (

.

the DLL conjecture );

For n = 2, our result recovers Enomoto’s classification
(J Math Kyoto U 2006)

In general, the RHS consist of ∞-orbits...

With an aid of Ginzburg-Lusztig theory (cf. Chriss-Ginzburg), the
proof is given by developing the geometry of N.
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Examination of the main theorem

Example (n = 1)

We have HC1 = HA1

V2 � C does not contribute to F or Z
⇒ q2 does not define an essential parameter of H.

For each a ∈ G, |IrrHa| ≤ 2

# of orbits 1 2 3 4
# of reprs. 1 2 2 2
Condition q0 , q±1

1 q0 = q−1
1 q0 = q1

This table shows we really need the condition like “q0q±1
1 , qm

2 ”.
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Examination of the main theorem

Comparison of correspondences

Let a ∈ G be a semi-simple element. We have

C[W] � H1,a, or Ha if

a = (s, q⃗) =

(1, 1) (if we consider H1 : DLL case)

(1, 1,−1, 1) (if we consider H : eDL case)

The inclusion C[W0] ⊂ C[W] gives:

.

Theorem (Springer-Kazhdan-Lusztig-Ginzburg)

.

.

.

. ..

.

.

.

.

.

1 Bx := H∗(µ−1(x)) is a graded C[W0]-module for x ∈ Na
2.

.

.

.

2 Ey := H∗(ν−1
1 (y)) is a graded C[W0]-module for y ∈ N1 � Na

2.
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Examination of the main theorem

Springer correspondences
Statement

.

Theorem (Springer 1976)

.

.

.

. ..

.

.

The assignment
G\N ∋ x 7→ Btop

x ∈ W0 −mod

sets up to a surjection
IrrepW0 −→→ G\N .

Here Btop
x denote the top degree part of Bx coming from the degree of

homology groups.

.

Remark

.

.

.

. ..

.

.

This surjection can be lifted to a bijection if one take account into A-group
data (some representations of fundamental groups of orbits of N).
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Examination of the main theorem

Springer correspondences
Statement

.

Theorem (math.RT/0607478, Thm C)

.

.

.

. ..

.

.

The assignment
G\N1 ∋ y 7→ Etop

y ∈ W0 −mod

sets up a bijection

IrrepW0
1:1↔ G\N1.

Here Etop
y denote the top degree part of Ey coming from the degree of

homology groups.

.

Remark

.

.

.

. ..

.

.

This bijection represents the fact that fundamental groups of orbits of N1
are all trivial.
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Examination of the main theorem

Springer correspondences
Example (n = 2)

We summarize usual and exotic Springer correspondences as:

W∨0 dim G\N G\N A(X) Char.
sign 1 {0} {0} {1}

Ssign 1 y[2ϵ1] x[2ϵ1] {1}
Lsign 1 y[α1] x[α1] {±1} -1

regular 2 y[α1] + y[ϵ1] x[α1] {±1} 1
triv 1 y[α1] + y[ϵ2] x[α1] + x[2ϵ2] {1}

where y[β] ∈ V1, and x[β] ∈ g are weight β-bases.
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Reference materials

The Deligne-Langlands-Lusztig conjecture

.

Theorem (Kazhdan-Lusztig 1987, Xi 2007)

.

.

.

. ..

.

.

Let a := (s, q) ∈ G be a semi-simple elmenent s.t.:

q is not a root of the Poincare polynomial of (W, S ).

Then we have
IrrepHa→→G(a)\Na.

This can be lifted to a one-to-one correspondence if we take account into
the A-group data (= the Lusztig part of the DLL parameter).

.

Remark

.

.

.

. ..

.

.

For type A, we completely know what happens even if q is a small root of
unity. (Lusztig, Ariki, Grojnowski, Vazirani,...)

.

Back to comments
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