- \mathfrak{g} simple complex Lie algebra of rank n (simply laced)
- $\mathfrak{g} = \mathfrak{n}^+ \otimes \mathfrak{h} \otimes \mathfrak{n}^-$

loop algebra $L(\mathfrak{g}) = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}], [x \otimes t^n, y \otimes t^m] = [x, y] \otimes t^{n+m}$ current algebra $\mathfrak{g}[t] = \mathfrak{g} \otimes \mathbb{C}[t]$

- \mathfrak{h} Cartan subalgebra, α a root, α_i simple root, R set of roots, h_i simple coroot, x_i^{\pm} simple root vectors
- λ weight, ω_i fundamental weight, P weights, P^+ dominant weights, P^{\vee} coweights
- $\bullet \ \hat{\mathfrak{g}}$ the affine Kac Moody algebra corresponding to \mathfrak{g}
- $\hat{\mathfrak{g}} = \hat{\mathfrak{b}} \oplus \hat{\mathfrak{n}_{-}} = \hat{\mathfrak{n}_{+}} \oplus \hat{\mathfrak{h}} \oplus \hat{\mathfrak{n}_{-}}, \ \hat{\mathfrak{h}} = \mathfrak{h} \oplus \mathbb{C}K \oplus \mathbb{C}d$
- Λ weight for $\hat{\mathfrak{g}}$, Λ_0 the fundamental weight of the basic representation
- W Weyl group of \mathfrak{g} , $W^{aff} = W \ltimes Q^{\vee}$, $\tilde{W} = W \ltimes P^{\vee} = \Sigma \ltimes W^{aff}$
- σ a non-trivial diagram automorphism of \mathfrak{g} of order $m \in \{2,3\}$).
- let ζ be a primitive m-th root of unity
- extend to $L(\mathfrak{g})$ by $\sigma(x \otimes t^r) = \zeta^r \sigma(x) \otimes t^r$
- $\mathfrak{g}_0, L^{\sigma}(\mathfrak{g}), \mathfrak{g}^{\sigma}[t]$, the fix points
- \mathfrak{g}_0 simple Lie algebra, \mathfrak{g}_{ϵ} irred. repr. of \mathfrak{g}_0 (θ_s or $2\theta_s$)
- I_0, R_0, P_0
- $x_{i,0} = x_i$ if $\sigma(i) = i$, else $x_{i,0} = x_i + x_{\sigma(i)}$. $x_{i,1} = x_i x_{\sigma(i)}$
- $A_{2n}^{(2)}$ and i = n different

The monoid \mathcal{P}^+

Let \mathcal{P}^+ be the monoid of *I*-tuples of polynomials $\pi_i = (\pi_1, \cdots, \pi_n)$ in an indeterminate *u* with constant term one, with multiplication being defined component wise. For $i \in I$ and $a \in \mathbb{C}^{\times}$, set

$$\pi_{i,a} = ((1 - au)^{\delta_{ij}} : j \in I) \in \mathcal{P}^+, \tag{1}$$

and for $\lambda \in P^+$, set

$$\pi_{\lambda,a} = \prod_{i \in I} (\pi_{i,a})^{\lambda(h_i)}, \quad \lambda \neq 0.$$

Clearly any $\pi^+ \in \mathcal{P}^+$ can be written uniquely as a product $_{\ell}$

$$\pi^+ = \prod_{k=1}^{\ell} \pi_{\lambda_i, a_i},$$

for some $\lambda_1, \dots, \lambda_\ell \in P^+$ and distinct elements $a_1, \dots, a_\ell \in \mathbb{C}^{\times}$. Define a map $\mathcal{P}^+ \to P^+$ by $\pi \to \lambda_\pi = \sum_{i \in I} \deg(\pi_i) \omega_i$.

The modules $W(\pi)$, $V(\pi)$. Given $\pi = (\pi_i)_{i \in I} \in \mathcal{P}^+$ with $\pi = \prod_{k=1}^{\ell} \pi_{\lambda_{\ell}, a_{\ell}}$ where a_1, \dots, a_{ℓ} are all distinct, let $W(\pi)$ be the $L(\mathfrak{g})$ -module generated by an element w_{π} with relations:

$$L(\mathfrak{n}^+)w_{\pi} = 0, \quad hw_{\pi} = \lambda_{\pi}(h)w_{\pi}, \quad (x_i^-)^{\lambda_{\pi}(h_i)+1}w_{\pi} = 0,$$
$$(h \otimes t^r)w_{\pi} = \left(\sum_{j=1}^{\ell} \lambda_j(h)a_j^r\right)w_{\pi}.$$

 $i \in I$ and $h \in \mathfrak{h}$.

Let $b \in \mathbb{C}^{\times}$ and let $\tau_b W(\pi)$ be the $L(\mathfrak{g})$ -module obtained by pulling back $W(\pi)$ through the automorphism τ_b of $L(\mathfrak{g})$, where $\tau_b(x \otimes t^r)b^r x \otimes t^r$.

Lemma 1. 1. Let $\pi \in \mathcal{P}^+$. Then $W(\pi) = \mathbf{U}(L(\mathfrak{n}^-))w_{\pi}$, and hence we have,

$$\mathbf{wt}(W(\pi)) \subset \lambda_{\pi} - Q^+, \quad \dim W(\pi)_{\lambda_{\pi}} = 1.$$

In particular, the module $W(\pi)$ has a unique irreducible quotient $V(\pi)$.

2. For $b \in \mathbb{C}^{\times}$, we have $\tau_b W(\pi) \cong W(\pi_b)$, where $\pi = (\pi_i(u))_{i \in I}$ and $\pi_b = (\pi_i(b^{-1}u))_{i \in I}$. In particular we have

$$W(\pi_{\lambda,a}) \cong_{\mathfrak{g}} W(\pi_{\lambda,ab}).$$

In particular, the irreducible modules are exacly the tensor products of evaluation modules.

Some results on Weyl modules

Theorem 1. (i) Given $\pi = (\pi_i)_{i \in I}$ with unique decomposition $\pi = \prod_{k=1}^{\ell} \pi_{\lambda_{\ell}, a_{\ell}}$, we have an isomorphism of $L(\mathfrak{g})$ -modules

$$W(\pi) \cong \bigotimes_{k=1}^{\ell} W(\pi_{\lambda_k, a_k}).$$

(ii) Let V be any finite-dimensional $L(\mathfrak{g})$ -module generated by an element $v \in V$ such that

$$L(\mathfrak{n}^+)v = 0, \quad L(\mathfrak{h})v = \mathbb{C}v.$$

Then there exists $\pi \in \mathcal{P}^+$ such that the assignment $w_{\pi} \to v$ extends to a surjective homomorphism $W(\pi) \to V$ of $L(\mathfrak{g})$ -modules.

(iii) Let $\lambda \in P^+$ and $a \in \mathbb{C}^{\times}$. Suppose that $\lambda = \sum_{i \in I} m_i \omega_i$. Then

$$W(\pi_{\lambda,a}) \cong_{\mathfrak{g}} \bigotimes_{i \in I} W(\pi_{\omega_i,1})^{\otimes m_i}.$$

From untwisted to twisted

Let (,) be the form on \mathfrak{h}_0^* induced by the Killing form of \mathfrak{g}_0 normalized so that $(\theta_0, \theta_0) = 2$. For $i \in I_0$ and $a \in \mathbb{C}^{\times}, \lambda \in P_0^+$ and \mathfrak{g} not of type A_{2n} let

$$\pi_{i,a}^{\sigma} = ((1 - a^{(\alpha_i, \alpha_i)} u)^{\delta_{ij}} : j \in I_0), \qquad \pi_{\lambda,a}^{\sigma} = \prod_{i \in I_0} \left(\pi_{i,a}^{\sigma}\right)^{\lambda(h_i)},$$

while if \mathfrak{g} is of type A_{2n} we set for $i \in I_0, a \in \mathbb{C}^{\times}, \lambda \in P_{\sigma}^+$,

$$\pi_{i,a}^{\sigma} = ((1 - au)^{\delta_{ij}} : j \in I_0), \qquad \pi_{\lambda,a}^{\sigma} = \prod_{i \in I_0} (\pi_{i,a}^{\sigma})^{(1 - \frac{1}{2}\delta_{i,n})\lambda(h_i)}$$

Let \mathcal{P}_{σ}^{+} be the monoid generated by the elements $\pi_{\lambda,a}^{\sigma}$. Define a map $\mathcal{P}_{\sigma}^{+} \to \mathcal{P}_{\prime}^{+}$ by

$$\lambda_{\pi^{\sigma}} = \sum_{i \in I_0} (\deg \pi_i^{\sigma}) \omega_i,$$

if \mathfrak{g} is not of type A_{2n} and

$$\lambda_{\pi^{\sigma}} = \sum_{i \in I_0} (1 + \delta_{i,n}) (\deg \pi_i^{\sigma}) \omega_i,$$

if \mathfrak{g} is of type A_{2n} . It is clear that any $\pi^{\sigma} \in \mathcal{P}_{\sigma}^+$ can be written (non-uniquely) as product

$$\pi^{\sigma} = \prod_{k=1}^{\ell} \prod_{\epsilon=0}^{m-1} \pi^{\sigma}_{\lambda_{k,\epsilon},\zeta^{\epsilon} a_{k}},$$

where $\mathbf{a} = (a_1, \dots, a_\ell)$ and \mathbf{a}^m have distinct coordinates. We call any such expression a standard decomposition of π^{σ} . Given $\lambda = \sum_{i \in I} m_i \omega_i \in P^+$ and $0 \le \epsilon \le m - 1$, define elements $\lambda(\epsilon) \in P_{\sigma}^+$ by,

$$\lambda(0) = \sum_{i \in I_0} m_i \omega_i, \quad \lambda(1) = \sum_{i \in I_0: \sigma(i) \neq i} m_{\sigma(i)} \omega_i,$$

if m = 2 and \mathfrak{g} not of type A_{2n}

$$\begin{split} \lambda(0) &= \sum_{i \in I_0} (1 + \delta_{i,n}) m_i \omega_i, \quad \lambda(1) = \sum_{i \in I_0: \sigma(i) \neq i} (1 + \delta_{\sigma(i),n}) m_{\sigma(i)} \omega_i, \\ & \text{if } m = 2 \text{ and } \mathfrak{g} \text{ of type } A_{2n} \end{split}$$

$$\lambda(0) = m_1\omega_1 + m_2\omega_2, \ \lambda(1) = m_3\omega_1, \ \lambda(2) = m_4\omega_1, \ \text{if} \ m = 3.$$

Define a map $\mathbf{r}: \mathcal{P}^+ \to \mathcal{P}^+_{\sigma}$ as follows. Given $\pi \in \mathcal{P}^+$ write

$$\pi = \prod_{k=1}^{\ell} \pi_{\lambda_k, a_k}, \quad a_k \neq a_p, \quad 1 \le k \ne p \le \ell,$$

and set

$$\mathbf{r}(\pi) = \prod_{k=1}^{\ell} \prod_{\epsilon=0}^{m-1} \pi^{\sigma}_{\lambda_k(\epsilon), \zeta^{\epsilon} a_k}.$$

Note that **r** is well defined since the choice of (λ_k, a_k) is unique and set

$$\mathbf{i}(\pi^{\sigma}) = \{\pi \in \mathcal{P}^+ : \mathbf{r}(\pi) = \pi^{\sigma}\}.$$

The set $\mathbf{i}(\pi^{\sigma})$

Lemma 2. 1. Let $i \in I_0$ and $a \in \mathbb{C}^{\times}$. We have,

$$\mathbf{i}(\pi_{\omega_i,a}^{\sigma}) = \{\pi_{\sigma^r(\omega_i),\zeta^{m-r_a}} \mid 0 \le r < m\},\$$

and for A_{2n}^2 and i = n,

$$\mathbf{i}(\pi_{2\omega_n,a}^{\sigma}) = \{\pi_{\omega_n,a}, \pi_{\omega_{n+1},-a}\}$$

2. Let $\pi^{\sigma} = \prod_{k=1}^{\ell} \prod_{\epsilon=0}^{m-1} \prod_{i \in I_0} (\pi^{\sigma}_{\omega_i, \zeta^{\epsilon} a_k})^{m_{k,\epsilon,i}}$ be a decomposition of π^{σ} into linear factors for \mathfrak{g} not of type A_{2n} . Then

$$\mathbf{i}(\pi^{\sigma}) = \prod_{k=1}^{\ell} \prod_{\epsilon=0}^{m-1} \prod_{i \in I_0} \{\pi_{\sigma^r(\omega_i), \zeta^{m-r+\epsilon}a_k} \mid 0 \le r < m\}^{m_{k,\epsilon,i}}$$

where the product of the sets is understood to be the set of products of elements of the sets. In the case of $A_{2n}^{(2)}$, let $\pi^{\sigma} = \prod_{k=1}^{\ell} \prod_{i \in I_0}^{1} \prod_{i \in I_0} (\pi^{\sigma}_{(1+\delta_{i,n})\omega_i,\zeta^{\epsilon}a_k})^{m_{k,\epsilon,i}}$ be a decomposition of π^{σ} into linear factors. Then

$$\mathbf{i}(\pi^{\sigma}) = \prod_{k=1}^{\ell} \prod_{\epsilon=0}^{2} \prod_{i \in I_0} \{ \pi_{\sigma^r(\omega_i), \zeta^{2-r+\epsilon} a_k} \, | \, 0 \le r < 2 \}^{m_{k,\epsilon,i}}$$

3. In particular, we have

$$\prod_{k=1}^{\ell} \pi_{\mu_k, a_k} = \prod_{k=1}^{\ell} \prod_{\epsilon=0}^{m-1} \prod_{i \in I_0} \pi_{\sigma^{\epsilon}(\omega_i), a_k}^{m_{k, \epsilon, i}} \in \mathbf{i}(\pi^{\sigma}),$$

where
$$\mu_k = \sum_{\epsilon=0}^{m-1} \sum_{i \in I_0} m_{k,\epsilon,i} \sigma^{\epsilon}(\omega_i)$$
 and $a_i^m \neq a_j^m$.

The modules $W(\pi^{\sigma})$, $V(\pi^{\sigma})$ Given $\pi^{\sigma} = (\pi_{i,\sigma})_{i \in I_0} \in \mathcal{P}_{\sigma}^+$, with If $\pi^{\sigma} = \prod_{k=1}^{\ell} \pi_{\lambda_k, a_k}^{\sigma} \in \mathcal{P}_{\sigma}^+$, the Weyl module $W(\pi^{\sigma})$ is the $\mathbf{U}(L^{\sigma}(\mathfrak{g}))$ -module generated by an element $w_{\pi^{\sigma}}$ with relations:

$$L^{\sigma}(\mathfrak{n}^{+})w_{\pi^{\sigma}} = 0, \quad hw_{\pi} = \lambda_{\pi}(h)w_{\pi^{\sigma}}, \quad (x_{i,0}^{-})^{\lambda_{\pi}(h_{i,0})+1}w_{\pi^{\sigma}} = 0,$$

And if \mathfrak{g} not of type A_{2n} ,

$$(h_{i,\epsilon} \otimes t^{mk-\epsilon})w_{\pi^{\sigma}} = \sum_{j=1}^{\ell} \lambda_j(h_{i,0}) a_j^{mk-\epsilon} w_{\pi^{\sigma}}, \qquad (2)$$

and for \mathfrak{g} of type A_{2n} ,

$$(h_{i,\epsilon} \otimes t^{mk-\epsilon})w_{\pi^{\sigma}} = \sum_{j=1}^{\ell} (1 - \frac{1}{2}\delta_{i,n})\lambda_j(h_{i,0})a_j^{mk-\epsilon}w_{\pi^{\sigma}}.$$
 (3)

for all $i \in I_0$ and $h \in \mathfrak{h}_0$.

For $b \in \mathbb{C}^{\times}$ we have $\tau_b(L^{\sigma}(\mathfrak{g})) \subset L^{\sigma}(\mathfrak{g})$ and we let $\tau_b W(\pi^{\sigma})$ be the $L^{\sigma}(\mathfrak{g})$ -module obtained by pulling back $W(\pi^{\sigma})$ through τ_b .

Lemma 3. 1. Let $\pi^{\sigma} \in \mathcal{P}_{\sigma}^+$. Then $W(\pi^{\sigma}) = \mathbf{U}(L^{\sigma}(\mathfrak{n}^-))w_{\pi}^{\sigma}$, and hence we have,

$$\mathbf{wt}(W(\pi^{\sigma})) \subset \lambda_{\pi^{\sigma}} - Q_0^+, \qquad \dim W(\pi^{\sigma})_{\lambda_{\pi^{\sigma}}} = 1.$$

In particular, the module $W(\pi^{\sigma})$ has a unique irreducible quotient $V(\pi^{\sigma})$.

2. For $b \in \mathbb{C}^{\times}$, we have $\tau_b W(\pi^{\sigma}) \cong W(\pi_b^{\sigma})$, where $\pi^{\sigma} = (\pi_i(u))_{i \in I}$ and $\pi_b^{\sigma} = (\pi_i(b^{-1}u))_{i \in I}$. In particular we have

$$W(\pi^{\sigma}_{\lambda,a}) \cong_{\mathfrak{g}_0} W(\pi^{\sigma}_{\lambda,ba}).$$

Some results for twisted Weyl modules

Theorem 2. 1. Let $\pi^{\sigma} \in \mathcal{P}_{\sigma}^+$. For all $\pi \in \mathbf{i}(\pi^{\sigma})$, we have

$$W(\pi^{\sigma}) \cong_{L^{\sigma}(\mathfrak{g})} W(\pi), \qquad V(\pi^{\sigma}) \cong_{L^{\sigma}(\mathfrak{g})} V(\pi).$$

2. Let $\pi^{\sigma} \in \mathcal{P}_{\sigma}^{+}$ and assume that $\prod_{k=1}^{\ell} \prod_{\epsilon=0}^{m-1} \pi^{\sigma}_{\lambda_{k,\epsilon},\zeta^{\epsilon}a_{k}} \in \mathcal{P}_{\sigma}^{+}$ is a standard decomposition of π . As $L^{\sigma}(\mathfrak{g})$ -modules, we have

$$W(\pi^{\sigma}) \cong \bigotimes_{k=1}^{\ell} W(\prod_{\epsilon=0}^{m-1} \pi^{\sigma}_{\lambda_{k,\epsilon},\zeta^{\epsilon}a_{k}}).$$

3. Suppose that
$$\prod_{\epsilon=0}^{m-1} \pi^{\sigma}_{\lambda_{\epsilon},\zeta^{\epsilon}a} \in \mathcal{P}^{+}_{\sigma}$$
. Then
 $W(\prod_{\epsilon=0}^{m-1} \pi^{\sigma}_{\lambda_{\epsilon},\zeta^{\epsilon}a}) \cong_{\mathfrak{g}_{0}} \bigotimes_{\epsilon=0}^{m-1} W(\pi^{\sigma}_{\lambda_{\epsilon},\zeta^{\epsilon}a}).$

4. Let $\lambda = \sum_{i \in I_0} m_i \omega_i \in P_{\sigma}^+$ and $a \in \mathbb{C}^{\times}$. We have for \mathfrak{g} not of type A_{2n}

$$W(\pi_{\lambda,a}^{\sigma}) \cong_{\mathfrak{g}_0} \bigotimes_{i=1}^n W(\pi_{\omega,1}^{\sigma})^{\otimes m_i}$$

and for \mathfrak{g} of type A_{2n}

$$W(\pi_{\lambda,a}^{\sigma}) \cong_{\mathfrak{g}_0} W(\pi_{2\omega_n,1}^{\sigma})^{\otimes \frac{m_n}{2}} \otimes \bigotimes_{i=1}^{n-1} W(\pi_{\omega_i,1}^{\sigma})^{\otimes m_i}.$$

5. Let V be any finite-dimensional $L^{\sigma}(\mathfrak{g})$ -module generated by an element $v \in V$ such that

$$L^{\sigma}(\mathfrak{n}^+)v = 0, \quad L^{\sigma}(\mathfrak{h})v = \mathbb{C}v.$$

Then there exists $\pi^{\sigma} \in \mathcal{P}_{\sigma}^{+}$ such that the assignment $w_{\pi^{\sigma}} \to v$ extends to a surjective homomorphism $W(\pi^{\sigma}) \to V$ of $L^{\sigma}(\mathfrak{g})$ -modules.