Coxeter Group Actions on the Cohomology of Toric Varieties

Gus Lehrer

University of Sydney
NSW 2006
Australia

MSRI, 14th March, 2008
Introduction

A toric variety is generally a torus, plus some “boundary components”.

There is one associated with every crystallographic root system \(\Phi \), which naturally has a \(W \)-action, \(W \) being the associated Weyl group.

The action of \(W \) on \(H^*(\mathcal{I}_W(\mathbb{C})) \) is a classical subject, which has been discussed by Procesi, Dolgachev, Lunts, Stembridge and others.

In general, if a variety \(X \) is defined over a number field \(K \), it has an associated \(\mathbb{C} \)-variety \(X(\mathbb{C}) \), but may also be reduced mod a prime ideal \(p \), to give an \(\overline{\mathbb{F}}_q \)-variety \(X_p \).
Introduction

A toric variety is generally a torus, plus some “boundary components”.

There is one associated with every crystallographic root system Φ, which naturally has a W-action, W being the associated Weyl group.

The action of W on $H^*(\mathcal{T}_W(\mathbb{C}))$ is a classical subject, which has been discussed by Procesi, Dolgachev, Lunts, Stembridge and others.

In general, if a variety X is defined over a number field K, it has an associated \mathbb{C}-variety $X(\mathbb{C})$, but may also be reduced mod a prime ideal p, to give an $\overline{\mathbb{F}}_q$-variety X_p.
Introduction

A toric variety is generally a torus, plus some “boundary components”.

There is one associated with every crystallographic root system \(\Phi \), which naturally has a \(W \)-action, \(W \) being the associated Weyl group.

The action of \(W \) on \(H^\ast(\mathcal{I}_W(\mathbb{C})) \) is a classical subject, which has been discussed by Procesi, Dolgachev, Lunts, Stembridge and others.

In general, if a variety \(X \) is defined over a number field \(K \), it has an associated \(\mathbb{C} \)-variety \(X(\mathbb{C}) \), but may also be reduced mod a prime ideal \(p \), to give an \(\overline{\mathbb{F}_q} \)-variety \(X_p \).
Introduction

A toric variety is generally a torus, plus some “boundary components”.

There is one associated with every crystallographic root system Φ, which naturally has a W-action, W being the associated Weyl group.

The action of W on $H^\ast(\mathcal{I}_W(\mathbb{C}))$ is a classical subject, which has been discussed by Procesi, Dolgachev, Lunts, Stembridge and others.

In general, if a variety X is defined over a number field K, it has an associated \mathbb{C}-variety $X(\mathbb{C})$, but may also be reduced mod a prime ideal p, to give an $\overline{\mathbb{F}}_q$-variety X_p.
The method of counting fixed points of twisted Frobenius maps on X_p is sometimes very effective in computing group actions.

Here I shall discuss the method of counting points over \mathbb{F}_q in general, and describe a general theorem which Mark Kisin and I proved in this connection.

The I’ll discuss the case of toric varieties as an illustration of the method.
The method of counting fixed points of twisted Frobenius maps on X_p is sometimes very effective in computing group actions.

Here I shall discuss the method of counting points over \mathbb{F}_q in general, and describe a general theorem which Mark Kisin and I proved in this connection.

The I’ll discuss the case of toric varieties as an illustration of the method.
The method of counting fixed points of twisted Frobenius maps on X_p is sometimes very effective in computing group actions.

Here I shall discuss the method of counting points over \mathbb{F}_q in general, and describe a general theorem which Mark Kisin and I proved in this connection.

The I’ll discuss the case of toric varieties as an illustration of the method.
The basic idea

Let X be a variety over $K \subset \mathbb{C}$, a number field, and let G be a finite group of K-morphisms of X.

Problem: describe the (graded) action of G on the usual (Betti, or singular) cohomology $H^*(X, \mathbb{C})$.

Interpret as: compute for any $g \in G$

$$P_X(g, t) := \sum_i \text{trace}(g, H^i(X, \mathbb{C})) t^i.$$
Let X be a variety over $K \subset \mathbb{C}$, a number field, and let G be a finite group of K-morphisms of X.

Problem: describe the (graded) action of G on the usual (Betti, or singular) cohomology $H^*(X, \mathbb{C})$.

Interpret as: compute for any $g \in G$

$$P_X(g, t) := \sum_i \text{trace}(g, H^i(X, \mathbb{C}))(t^i).$$
The basic idea

Let X be a variety over $K \subset \mathbb{C}$, a number field, and let G be a finite group of K-morphisms of X.

Problem: describe the (graded) action of G on the usual (Betti, or singular) cohomology $H^*(X, \mathbb{C})$.

Interpret as: compute for any $g \in G$

$$P_X(g, t) := \sum_i \text{trace}(g, H^i(X, \mathbb{C})) t^i.$$
The basic idea

Let X be a variety over $K \subset \mathbb{C}$, a number field, and let G be a finite group of K-morphisms of X.

Problem: describe the (graded) action of G on the usual (Betti, or singular) cohomology $H^*(X, \mathbb{C})$.

Interpret as: compute for any $g \in G$

$$P_X(g, t) := \sum_i \text{trace}(g, H^i(X, \mathbb{C})) t^i.$$
The residue field $k(p)$ of p has order (say) q, and we write X_q for the $\overline{\mathbb{F}_q}$-variety associated with X.

There are two elements to the method: first, given an isomorphism $\overline{\mathbb{Q}_\ell} \sim \mathbb{C}$, we have isomorphisms of G-modules

$$H^i(X(\mathbb{C}), \mathbb{C}) \sim H^i(X_q, \overline{\mathbb{Q}_\ell}).$$

In practice, one has such results for “almost all q”, and we shall assume this.

Second, assume that we knew that the Frobenius morphism \mathcal{F} acts on $H^i_c(X_q, \overline{\mathbb{Q}_\ell})$ with just a single eigenvalue q^{m_i}.
The residue field $k(p)$ of p has order (say) q, and we write X_q for the \overline{F}_q-variety associated with X.

There are two elements to the method: first, given an isomorphism $\overline{\mathbb{Q}}_\ell \sim \mathbb{C}$, we have isomorphisms of G-modules

$$H^i(\Gamma, \mathbb{C}) \sim \to H^i(\overline{\mathbb{Q}}_\ell).$$

In practice, one has such results for “almost all q”, and we shall assume this.

Second, assume that we knew that the Frobenius morphism \mathcal{F} acts on $H^i_c(\overline{\mathbb{Q}}_\ell)$ with just a single eigenvalue q^{m_i}.
The residue field $k(p)$ of p has order (say) q, and we write X_q for the $\overline{F_q}$-variety associated with X.

There are two elements to the method: first, given an isomorphism $\overline{Q_\ell} \sim \mathbb{C}$, we have isomorphisms of G-modules

$$
H^i(X(\mathbb{C}), \mathbb{C}) \sim H^i(X_q, \overline{Q_\ell}).
$$

In practice, one has such results for “almost all q”, and we shall assume this.

Second, assume that we knew that the Frobenius morphism F acts on $H^i_c(X_q, \overline{Q_\ell})$ with just a single eigenvalue q^{m_i}.
The residue field $k(p)$ of p has order (say) q, and we write X_q for the $\overline{\mathbb{F}}_q$-variety associated with X.

There are two elements to the method: first, given an isomorphism $\overline{\mathbb{Q}}_\ell \sim \mathbb{C}$, we have isomorphisms of G-modules

$$H^i(X(\mathbb{C}), \mathbb{C}) \sim H^i(X_q, \overline{\mathbb{Q}}_\ell).$$

In practice, one has such results for “almost all q”, and we shall assume this.

Second, assume that we knew that the Frobenius morphism \mathcal{F} acts on $H^i_c(X_q, \overline{\mathbb{Q}}_\ell)$ with just a single eigenvalue q^{m_i}.
The residue field $k(p)$ of p has order (say) q, and we write X_q for the \mathbb{F}_q-variety associated with X.

There are two elements to the method: first, given an isomorphism $\mathbb{Q}_\ell \sim \mathbb{C}$, we have isomorphisms of G-modules

$$H^i(X(\mathbb{C}), \mathbb{C}) \sim \rightarrow H^i(X_q, \mathbb{Q}_\ell).$$

In practice, one has such results for “almost all q”, and we shall assume this.

Second, assume that we knew that the Frobenius morphism \mathcal{F} acts on $H^i_c(X_q, \mathbb{Q}_\ell)$ with just a single eigenvalue q^{m_i}.
For any $g \in G$, compute $|X_q^{g,F}|$ using Grothendieck’s fixed point theorem:

$$|X_q^{g,F}| = \sum_i (-1)^i \text{trace}(gF, H^i_c(X_q, \overline{\mathbb{Q}_\ell}))$$

$$= \sum_i (-1)^i q^{m_i} \text{trace}(g, H^i_c(X(\mathbb{C}), \mathbb{C})).$$

If we know the left side for almost all q, and $i \mapsto m_i$ is injective, then we have the compact supports version of $P_X(g, t)$.

In many examples (e.g. for X smooth) the compact supports version is enough.
For any \(g \in G \), compute \(|X^g| \) using Grothendieck’s fixed point theorem:

\[
|X^g| = \sum_i (-1)^i \text{trace}(g, H^i_c(X, \overline{Q}_\ell)) = \sum_i (-1)^i q^m \text{trace}(g, H^i_c(X(\mathbb{C}), \mathbb{C})).
\]

If we know the left side for almost all \(q \), and \(i \mapsto m_i \) is injective, then we have the compact supports version of \(P_X(g, t) \).

In many examples (e.g. for \(X \) smooth) the compact supports version is enough.
For any \(g \in G \), compute \(|X_q^{gF}| \) using Grothendieck’s fixed point theorem:

\[
|X_q^{gF}| = \sum_i (-1)^i \text{trace}(gF, H^i_c(X_q, \overline{\mathbb{Q}_\ell}))
\]

\[
= \sum_i (-1)^i q^{m_i} \text{trace}(g, H^i_c(X(\mathbb{C}), \mathbb{C})).
\]

If we know the left side for almost all \(q \), and \(i \mapsto m_i \) is injective, then we have the compact supports version of \(P_X(g, t) \).

In many examples (e.g. for \(X \) smooth) the compact supports version is enough.
For any $g \in G$, compute $|X_q^{g,F}|$ using Grothendieck’s fixed point theorem:

$$|X_q^{g,F}| = \sum_i(-1)^i \text{trace}(gF, H^i_c(X_q, \mathbb{Q}_\ell))$$
$$= \sum_i(-1)^i q^{m_i} \text{trace}(g, H^i_c(X(\mathbb{C}), \mathbb{C})).$$

If we know the left side for almost all q, and $i \mapsto m_i$ is injective, then we have the compact supports version of $P_X(g, t)$.

In many examples (e.g. for X smooth) the compact supports version is enough.
For any \(g \in G \), compute \(|X_q^{g,F}| \) using Grothendieck’s fixed point theorem:

\[
|X_q^{g,F}| = \sum_i (-1)^i \text{trace}(gF, H_c^i(X_q, \overline{\mathbb{Q}_\ell}))
= \sum_i (-1)^i q^{m_i} \text{trace}(g, H_c^i(X(\mathbb{C}), \mathbb{C})).
\]

If we know the left side for almost all \(q \), and \(i \mapsto m_i \) is injective, then we have the compact supports version of \(P_X(g, t) \).

In many examples (e.g. for \(X \) smooth) the compact supports version is enough.
Cohomology and Filtrations.
The setup.

\(K\): an algebraic number field, \(\overline{K}\): its algebraic closure.

\(S\): a finite set of primes of \(K\).

\(K_S \subset \overline{K}\): the maximal subfield of \(\overline{K}\), unramified outside \(S\).

\(G := \text{Gal}(\overline{K}/K) \xrightarrow{\text{onto}} G_{K,S} := \text{Gal}(K_S/K)\).

These are both profinite topological groups; subgroups of finite index are open.

\(\ell\): a rational prime, all of whose prime factors in \(K\) lie in \(S\).

If \(p \not\in S\) is a prime of \(K\), there is an element \(\text{Frob}_p \in G_{K,S}\) well defined up to conjugation.

If \(q_p := |\kappa(p)|\) (\(\kappa(p)\) is the residue field of \(p\)) then \(\text{Frob}_p\) induces the \(q_p\)-power map on the extension of \(\kappa(p)\) arising in \(K_S\).
Cohomology and Filtrations.
The setup.

\(K\): an algebraic number field, \(\overline{K}\): its algebraic closure.
\(S\): a finite set of primes of \(K\).
\(K_S \subseteq \overline{K}\): the maximal subfield of \(\overline{K}\), unramified outside \(S\).
\(G := \text{Gal}(\overline{K}/K) \twoheadrightarrow G_{K,S} := \text{Gal}(K_S/K)\).
These are both profinite topological groups; subgroups of finite index are open.
\(\ell\): a rational prime, all of whose prime factors in \(K\) lie in \(S\).

If \(p \notin S\) is a prime of \(K\), there is an element \(\text{Frob}_p \in G_{K,S}\) well defined up to conjugation.

If \(q_p := |\kappa(p)|\) (\(\kappa(p)\) is the residue field of \(p\)) then \(\text{Frob}_p\) induces the \(q_p\)-power map on the extension of \(\kappa(p)\) arising in \(K_S\).
Cohomology and Filtrations.
The setup.

K: an algebraic number field, \overline{K}: its algebraic closure.
S: a finite set of primes of K.
$K_S \subset \overline{K}$: the maximal subfield of \overline{K}, unramified outside S.
$G := \text{Gal}(\overline{K}/K) \onto G_{K,S} := \text{Gal}(K_S/K)$.

These are both profinite topological groups; subgroups of finite index are open.

ℓ: a rational prime, all of whose prime factors in K lie in S.

If $p \not\in S$ is a prime of K, there is an element $\text{Frob}_p \in G_{K,S}$ well defined up to conjugation.

If $q_p := |\kappa(p)|$ ($\kappa(p)$ is the residue field of p) then Frob_p induces the q_p-power map on the extension of $\kappa(p)$ arising in K_S.
Cohomology and Filtrations.
The setup.

\(K \): an algebraic number field, \(\overline{K} \): its algebraic closure.
\(S \): a finite set of primes of \(K \).
\(K_S \subset \overline{K} \): the maximal subfield of \(\overline{K} \), unramified outside \(S \).
\(G := \text{Gal}(\overline{K}/K) \onto G_{K,S} := \text{Gal}(K_S/K) \).
These are both profinite topological groups; subgroups of finite index are open.

\(\ell \): a rational prime, all of whose prime factors in \(K \) lie in \(S \).

If \(p \not\in S \) is a prime of \(K \), there is an element \(\text{Frob}_p \in G_{K,S} \) well defined up to conjugation.

If \(q_p := |\kappa(p)| \) (\(\kappa(p) \) is the residue field of \(p \)) then \(\text{Frob}_p \) induces the \(q_p \)-power map on the extension of \(\kappa(p) \) arising in \(K_S \).
Cohomology and Filtrations.

The setup.

\(K \): an algebraic number field, \(\overline{K} \): its algebraic closure.

\(S \): a finite set of primes of \(K \).

\(K_S \subset \overline{K} \): the maximal subfield of \(\overline{K} \), unramified outside \(S \).

\(G := \text{Gal}(\overline{K}/K) \cong G_{K,S} := \text{Gal}(K_S/K) \).

These are both profinite topological groups; subgroups of finite index are open.

\(\ell \): a rational prime, all of whose prime factors in \(K \) lie in \(S \).

If \(p \not\in S \) is a prime of \(K \), there is an element \(\text{Frob}_p \in G_{K,S} \) well defined up to conjugation.

If \(q_p := |\kappa(p)| \) (\(\kappa(p) \) is the residue field of \(p \)) then \(\text{Frob}_p \) induces the \(q_p \)-power map on the extension of \(\kappa(p) \) arising in \(K_S \).
Cohomology and Filtrations.

The setup.

\(K \): an algebraic number field, \(\overline{K} \): its algebraic closure.

\(S \): a finite set of primes of \(K \).

\(K_S \subset \overline{K} \): the maximal subfield of \(\overline{K} \), unramified outside \(S \).

\(G := \text{Gal}(\overline{K}/K)^{\text{onto}} \rightarrow G_{K,S} := \text{Gal}(K_S/K) \).

These are both profinite topological groups; subgroups of finite index are open.

\(\ell \): a rational prime, all of whose prime factors in \(K \) lie in \(S \).

If \(p \notin S \) is a prime of \(K \), there is an element \(\text{Frob}_p \in G_{K,S} \) well defined up to conjugation.

If \(q_p := |\kappa(p)| \) (\(\kappa(p) \) is the residue field of \(p \)) then \(\text{Frob}_p \) induces the \(q_p \)-power map on the extension of \(\kappa(p) \) arising in \(K_S \).
Cohomology and Filtrations.

The setup.

\(\mathbb{K} \): an algebraic number field, \(\overline{\mathbb{K}} \): its algebraic closure.

\(S \): a finite set of primes of \(\mathbb{K} \).

\(\mathbb{K}_S \subset \overline{\mathbb{K}} \): the maximal subfield of \(\overline{\mathbb{K}} \), unramified outside \(S \).

\(G := \text{Gal}(\overline{\mathbb{K}}/\mathbb{K}) \onto \text{Gal}(\mathbb{K}_S/\mathbb{K}) \).

These are both profinite topological groups; subgroups of finite index are open.

\(\ell \): a rational prime, all of whose prime factors in \(\mathbb{K} \) lie in \(S \).

If \(p \not\in S \) is a prime of \(\mathbb{K} \), there is an element \(\text{Frob}_p \in \text{Gal}(\mathbb{K}_S/\mathbb{K}) \) well defined up to conjugation.

If \(q_p := |\kappa(p)| \) (\(\kappa(p) \) is the residue field of \(p \)) then \(\text{Frob}_p \) induces the \(q_p \)-power map on the extension of \(\kappa(p) \) arising in \(\mathbb{K}_S \).
Cohomology theories

Let X be an algebraic variety (i.e. a reduced scheme of finite type) over the number field K.

There are 3 cohomology theories naturally associated with X. The interrelationships among them are the key to this work.

1. de Rham Cohomology. This is a sequence $H^j_{dR}(X)$, $j = 0, 1, 2, \ldots$ of K-vector spaces, which come naturally with a filtration $F^\bullet H^j_{dR}(X)$:

$$F^k H^j_{dR}(X) \supseteq F^{k+1} H^j_{dR}(X).$$

2. Betti (usual) Cohomology. For any embedding $\sigma: K \hookrightarrow \mathbb{C}$, $X_{\sigma} := X \otimes_K \mathbb{C}$ has \mathbb{C}-points which may be identified with a complex analytic (algebraic) variety $X_{\sigma}(\mathbb{C})$.
Cohomology theories

Let X be an algebraic variety (i.e. a reduced scheme of finite type) over the number field K.

There are 3 cohomology theories naturally associated with X. The interrelationships among them are the key to this work.

1. de Rham Cohomology. This is a sequence $H^j_{dR}(X)$ $j = 0, 1, 2, \ldots$ of K-vector spaces, which come naturally with a filtration $F^\bullet H^j_{dR}(X)$:

$$F^k H^j_{dR}(X) \supseteq F^{k+1} H^j_{dR}(X).$$

2. Betti (usual) Cohomology. For any embedding $\sigma : K \hookrightarrow \mathbb{C}$, $X_\sigma := X \otimes_K \mathbb{C}$ has \mathbb{C}-points which may be identified with a complex analytic (algebraic) variety $X_\sigma(\mathbb{C})$.
Cohomology theories

Let X be an algebraic variety (i.e. a reduced scheme of finite type) over the number field K.

There are 3 cohomology theories naturally associated with X. The interrelationships among them are the key to this work.

1. de Rham Cohomology. This is a sequence $H^j_{dR}(X)$ $j = 0, 1, 2, \ldots$ of K-vector spaces, which come naturally with a filtration $F^\bullet H^j_{dR}(X)$:

$$F^k H^j_{dR}(X) \supseteq F^{k+1} H^j_{dR}(X).$$

2. Betti (usual) Cohomology. For any embedding $\sigma : K \rightarrow \mathbb{C}$, $X_\sigma := X \otimes_K \mathbb{C}$ has \mathbb{C}-points which may be identified with a complex analytic (algebraic) variety $X_\sigma(\mathbb{C})$.
Cohomology theories

Let X be an algebraic variety (i.e. a reduced scheme of finite type) over the number field K.

There are 3 cohomology theories naturally associated with X. The interrelationships among them are the key to this work.

1. **de Rham Cohomology.** This is a sequence $H^j_{dR}(X)$ for $j = 0, 1, 2, \ldots$ of K-vector spaces, which come naturally with a filtration $F^i H^j_{dR}(X)$:

 $$F^k H^j_{dR}(X) \supseteq F^{k+1} H^j_{dR}(X).$$

2. **Betti (usual) Cohomology.** For any embedding $\sigma : K \hookrightarrow \mathbb{C}$, $X_\sigma := X \otimes_K \mathbb{C}$ has \mathbb{C}-points which may be identified with a complex analytic (algebraic) variety $X_\sigma(\mathbb{C})$.
Its complex cohomology $H^i(X_{\sigma}(\mathbb{C}), \mathbb{C})$ is a sequence of \mathbb{C}-vector spaces.

Betti cohomology comes with 2 natural filtrations: the first, F^\bullet ("de Rham filtration"), arises from that of H^i_{dR} via the extension of scalars isomorphism:

$$H^i_{dR}(X) \otimes_K \mathbb{C} \xrightarrow{\sim} H^i(X_{\sigma}(\mathbb{C}), \mathbb{C}) \xrightarrow{\sim} H^i(X_{\sigma}(\mathbb{C}), \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{C}.$$

The second filtration \overline{F}^\bullet comes from the first via complex conjugation. Together, they provide the Hodge filtration:

$$F^p H^i(X_{\sigma}(\mathbb{C}), \mathbb{C}) \cap \overline{F}^q H^i(X_{\sigma}(\mathbb{C}), \mathbb{C})$$
Its complex cohomology $H^j(X_\sigma(\mathbb{C}), \mathbb{C})$ is a sequence of \mathbb{C}-vector spaces.

Betti cohomology comes with 2 natural filtrations: the first, F^\bullet ("de Rham filtration"), arises from that of H^j_{dR} via the extension of scalars isomorphism:

$$H^j_{dR}(X) \otimes_K \mathbb{C} \xrightarrow{\sim} H^j(X_\sigma(\mathbb{C}), \mathbb{C}) \xrightarrow{\sim} H^j(X_\sigma(\mathbb{C}), \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{C}.$$

The second filtration \overline{F}^\bullet comes from the first via complex conjugation. Together, they provide the Hodge filtration:

$$F^p H^j(X_\sigma(\mathbb{C}), \mathbb{C}) \cap \overline{F}^q H^j(X_\sigma(\mathbb{C}), \mathbb{C})$$
Its complex cohomology \(H^j(X_\sigma(\mathbb{C}), \mathbb{C}) \) is a sequence of \(\mathbb{C} \)-vector spaces.

Betti cohomology comes with 2 natural filtrations: the first, \(F^\bullet \) ("de Rham filtration"), arises from that of \(H^j_{\text{dR}} \) via the extension of scalars isomorphism:

\[
H^j_{\text{dR}}(X) \otimes_K \mathbb{C} \xrightarrow{\sim} H^j(X_\sigma(\mathbb{C}), \mathbb{C}) \xrightarrow{\sim} H^j(X_\sigma(\mathbb{C}), \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{C}.
\]

The second filtration \(\overline{F}^\bullet \) comes from the first via complex conjugation. Together, they provide the Hodge filtration:

\[
F^p H^j(X_\sigma(\mathbb{C}), \mathbb{C}) \cap \overline{F}^q H^j(X_\sigma(\mathbb{C}), \mathbb{C})
\]
Its complex cohomology $H^i(X_\sigma(\mathbb{C}), \mathbb{C})$ is a sequence of \mathbb{C}-vector spaces.

Betti cohomology comes with 2 natural filtrations: the first, F^\bullet ("de Rham filtration"), arises from that of H^i_{dR} via the extension of scalars isomorphism:

$$H^i_{dR}(X) \otimes_K \mathbb{C} \sim \rightarrow H^i(X_\sigma(\mathbb{C}), \mathbb{C}) \sim \rightarrow H^i(X_\sigma(\mathbb{C}), \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{C}.$$

The second filtration \bar{F}^\bullet comes from the first via complex conjugation. Together, they provide the Hodge filtration:

$$F^p H^i(X_\sigma(\mathbb{C}), \mathbb{C}) \cap \bar{F}^q H^i(X_\sigma(\mathbb{C}), \mathbb{C})$$
Finally, we have

3. \(\ell \)-adic Étale Cohomology. With \(\ell \) a rational prime as above, we have a sequence of \(\mathbb{Q}_\ell \)-vector spaces \(H^i(X_{\overline{K}}, \mathbb{Q}_\ell) \), the \(\ell \)-adic cohomology of \(X_{\overline{K}} := X \otimes_K \overline{K} \).

Important: \(G = \text{Gal}(\overline{K}/K) \) acts on \(X_{\overline{K}} \), and hence on \(H^i(X_{\overline{K}}, \mathbb{Q}_\ell) \); in particular, so does \(\text{Frob}_p \) for any prime \(p \notin S \).
Finally, we have

3. ℓ-adic Étale Cohomology. With ℓ a rational prime as above, we have a sequence of \mathbb{Q}_ℓ-vector spaces $H^j(X_{\overline{K}}, \mathbb{Q}_\ell)$, the ℓ-adic cohomology of $X_{\overline{K}} := X \otimes_K \overline{K}$.

Important: $G = \text{Gal}(\overline{K}/K)$ acts on $X_{\overline{K}}$, and hence on $H^j(X_{\overline{K}}, \mathbb{Q}_\ell)$; in particular, so does Frob_p for any prime $p \notin S$.
Finally, we have

3. ℓ-adic Étale Cohomology. With ℓ a rational prime as above, we have a sequence of \mathbb{Q}_ℓ-vector spaces $H^i(X_K, \mathbb{Q}_\ell)$, the ℓ-adic cohomology of $X_K := X \otimes_K \overline{K}$.

Important: $G = \text{Gal}(\overline{K}/K)$ acts on X_K, and hence on $H^i(X_K, \mathbb{Q}_\ell)$; in particular, so does Frob_p for any prime $p \notin S$.
Interrelationships

Given $\overline{\sigma} : \overline{K} \rightarrow \mathbb{C}$ which extends σ, and an embedding $\mathbb{Q}_\ell \rightarrow \mathbb{C}$, we have canonical isomorphisms

\[
(*) \quad H^i(X_{\overline{K}}, \mathbb{Q}_\ell) \otimes_{\mathbb{Q}_\ell} \mathbb{C} \sim H^i(X_{\sigma}(\mathbb{C}), \mathbb{C}) \sim H^i_{dR}(X) \otimes_K \mathbb{C}.
\]

These permit the transfer of information from each setting to the others.

Weights

Each of the 3 cohomology theories (independently) carries an increasing weight filtration W_\bullet (due to Deligne).

The isomorphisms $(*)$ above respect the weight filtrations.
Interrelationships

Given $\bar{\sigma} : \bar{K} \to \mathbb{C}$ which extends σ, and an embedding $\mathbb{Q}_\ell \to \mathbb{C}$, we have canonical isomorphisms

\[
(*) \ H_i^j(X_{\bar{K}}, \mathbb{Q}_\ell) \otimes_{\mathbb{Q}_\ell} \mathbb{C} \sim H_i^j(X_{\sigma}(\mathbb{C}), \mathbb{C}) \sim H_{dR}^i(X) \otimes_K \mathbb{C}.
\]

These permit the transfer of information from each setting to the others.

Weights

Each of the 3 cohomology theories (independently) carries an increasing weight filtration W_\bullet (due to Deligne).

The isomorphisms (*) above respect the weight filtrations.
Interrelationships

Given $\bar{\sigma} : \bar{K} \to \mathbb{C}$ which extends σ, and an embedding $\mathbb{Q}_\ell \to \mathbb{C}$, we have canonical isomorphisms

$$(^*) \quad H^i(X_{\bar{K}}, \mathbb{Q}_\ell) \otimes_{\mathbb{Q}_\ell} \mathbb{C} \sim H^i(X_{\sigma}(\mathbb{C}), \mathbb{C}) \sim H^i_{\text{dR}}(X) \otimes_K \mathbb{C}.$$

These permit the transfer of information from each setting to the others.

Weights

Each of the 3 cohomology theories (independently) carries an increasing weight filtration W_\bullet (due to Deligne).

The isomorphisms $(^*)$ above respect the weight filtrations.
Given $\overline{\sigma} : \overline{K} \to \mathbb{C}$ which extends σ, and an embedding $\mathbb{Q}_\ell \to \mathbb{C}$, we have canonical isomorphisms

\begin{align*}
(*) \quad H^i(X_{\overline{K}}, \mathbb{Q}_\ell) \otimes_{\mathbb{Q}_\ell} \mathbb{C} &\sim H^i(X_\sigma(\mathbb{C}), \mathbb{C}) \sim H^i_{dR}(X) \otimes_K \mathbb{C}.
\end{align*}

These permit the transfer of information from each setting to the others.

Weights

Each of the 3 cohomology theories (independently) carries an increasing weight filtration W_\bullet (due to Deligne).

The isomorphisms (*) above respect the weight filtrations.
Interrelationships

Given $\sigma : \overline{K} \rightarrow \mathbb{C}$ which extends σ, and an embedding $\mathbb{Q}_\ell \rightarrow \mathbb{C}$, we have canonical isomorphisms

$$(*) \quad H^i(X_{\overline{K}}, \mathbb{Q}_\ell) \otimes_{\mathbb{Q}_\ell} \mathbb{C} \sim H^i(X_\sigma(\mathbb{C}), \mathbb{C}) \sim H^i_{dR}(X) \otimes_K \mathbb{C}.$$

These permit the transfer of information from each setting to the others.

Weights

Each of the 3 cohomology theories (independently) carries an increasing weight filtration W_\bullet (due to Deligne).

The isomorphisms $(*)$ above respect the weight filtrations.
Interrelationships

Given \(\overline{\sigma} : \overline{K} \to \mathbb{C} \) which extends \(\sigma \), and an embedding \(\mathbb{Q}_\ell \to \mathbb{C} \), we have canonical isomorphisms

\[
(*) \quad H^i(X_{\overline{K}}, \mathbb{Q}_\ell) \otimes_{\mathbb{Q}_\ell} \mathbb{C} \sim H^i(X_{\sigma}(\mathbb{C}), \mathbb{C}) \sim H^i_{dR}(X) \otimes_K \mathbb{C}.
\]

These permit the transfer of information from each setting to the others.

Weights

Each of the 3 cohomology theories (independently) carries an increasing weight filtration \(W_\bullet \) (due to Deligne).

The isomorphisms \((*)\) above respect the weight filtrations.
The 3 filtrations F^\bullet, \bar{F}^\bullet, and W_\bullet all interact in $H^i(X_\sigma(\mathbb{C}), \mathbb{C})$ in a way which connects the 3 cohomology theories.

We have:

$$F^p H^i(X_\sigma(\mathbb{C}), \mathbb{C}) \cap \bar{F}^q H^i(X_\sigma(\mathbb{C}), \mathbb{C}) \subset W_{p+q} H^i(X_\sigma(\mathbb{C}), \mathbb{C})$$

and

$$\text{Gr}_n^W H^i(X_\sigma(\mathbb{C}), \mathbb{C}) = \oplus_{p+q=n} \text{Gr}_F^p \text{Gr}_F^q H^i(X_\sigma(\mathbb{C}), \mathbb{C}).$$

This, together with arguments from p-adic Galois module theory, leads to the following
The 3 filtrations $F^\bullet, \overline{F}^\bullet$, and W_\bullet all interact in $H^i(X_\sigma(\mathbb{C}), \mathbb{C})$ in a way which connects the 3 cohomology theories.

We have:

$$F^p H^i(X_\sigma(\mathbb{C}), \mathbb{C}) \cap \overline{F}^q H^i(X_\sigma(\mathbb{C}), \mathbb{C}) \subset W_{p+q} H^i(X_\sigma(\mathbb{C}), \mathbb{C})$$

and

$$\text{Gr}_n^W H^i(X_\sigma(\mathbb{C}), \mathbb{C}) = \bigoplus_{p+q=n} \text{Gr}_F^p \text{Gr}_{\overline{F}}^q H^i(X_\sigma(\mathbb{C}), \mathbb{C}).$$

This, together with arguments from p-adic Galois module theory, leads to the following
The 3 filtrations F^\bullet, \bar{F}^\bullet, and W_\bullet all interact in $H^j(X_\sigma(\mathbb{C}), \mathbb{C})$ in a way which connects the 3 cohomology theories.

We have:

$$F^p H^j(X_\sigma(\mathbb{C}), \mathbb{C}) \cap \bar{F}^q H^j(X_\sigma(\mathbb{C}), \mathbb{C}) \subset W_{p+q} H^j(X_\sigma(\mathbb{C}), \mathbb{C})$$

and

$$\text{Gr}_n^W H^j(X_\sigma(\mathbb{C}), \mathbb{C}) = \bigoplus_{p+q=n} \text{Gr}_F^p \text{Gr}_\bar{F}^q H^j(X_\sigma(\mathbb{C}), \mathbb{C}).$$

This, together with arguments from p-adic Galois module theory, leads to the following
The 3 filtrations F^\bullet, \overline{F}^\bullet, and W_\bullet all interact in $H^i(X_\sigma(\mathbb{C}), \mathbb{C})$ in a way which connects the 3 cohomology theories.

We have:

$$F^p H^j(X_\sigma(\mathbb{C}), \mathbb{C}) \cap \overline{F}^q H^j(X_\sigma(\mathbb{C}), \mathbb{C}) \subset W_{p+q} H^j(X_\sigma(\mathbb{C}), \mathbb{C})$$

and

$$\text{Gr}_n^W H^j(X_\sigma(\mathbb{C}), \mathbb{C}) = \bigoplus_{p+q=n} \text{Gr}_F^p \text{Gr}_\overline{F}^q H^j(X_\sigma(\mathbb{C}), \mathbb{C}).$$

This, together with arguments from p-adic Galois module theory, leads to the following...
The 3 filtrations F^\bullet, \overline{F}^\bullet, and W_\bullet all interact in $H^j(X_\sigma(\mathbb{C}), \mathbb{C})$ in a way which connects the 3 cohomology theories.

We have:

$$F^pH^j(X_\sigma(\mathbb{C}), \mathbb{C}) \cap \overline{F}^qH^j(X_\sigma(\mathbb{C}), \mathbb{C}) \subset W_{p+q}H^j(X_\sigma(\mathbb{C}), \mathbb{C})$$

and

$$\text{Gr}_n^W H^j(X_\sigma(\mathbb{C}), \mathbb{C}) = \oplus_{p+q=n} \text{Gr}_F^p \text{Gr}\overline{F}^q H^j(X_\sigma(\mathbb{C}), \mathbb{C}).$$

This, together with arguments from p-adic Galois module theory, leads to the following
Theorem.

(Kisin-L P&AMQ (Coates issue) 2006) Let K, S etc. be as above, and let X be a variety over K. Assume that for each prime $p \notin S$, the eigenvalues of Frob_p on $H^j(X, \mathbb{Q}_\ell)$ are all of the form ζq_p^i ($i \in \mathbb{N}, \zeta$ a root of unity.), and that for any $i \in \mathbb{N}$, there are r_i of these.

Then $\text{Gr}_F^p \text{Gr}_F^q H^j(X_\sigma(\mathbb{C}), \mathbb{C})$ has dimension r_i if $p = q = i$, and is 0 otherwise.

NB The hypothesis is about eigenvalues of Frobenius, while the conclusion is about the Hodge filtration, which does not exist in ℓ-adic cohomology.

Say that X is mixed Tate (mt) if it satisfies the conditions of the theorem.

Examples: $\mathbb{A}^n, \mathbb{P}^n$, hyperplane complements, reductive group schemes, homogeneous spaces, hyperplane complements, toral analogues,...
Theorem.(Kisin-L P&AMQ (Coates issue) 2006) Let K, S etc. be as above, and let X be a variety over K. Assume that for each prime $p \not\in S$, the eigenvalues of Frob_p on $H^i(X, \mathbb{Q}_\ell)$ are all of the form ζq_p^i ($i \in \mathbb{N}$, ζ a root of unity.), and that for any $i \in \mathbb{N}$, there are r_i of these.

Then $\text{Gr}_F^p \text{Gr}_F^q H^i(X_{\sigma}(\mathbb{C}), \mathbb{C})$ has dimension r_i if $p = q = i$, and is 0 otherwise.

NB The hypothesis is about eigenvalues of Frobenius, while the conclusion is about the Hodge filtration, which does not exist in ℓ-adic cohomology.

Say that X is mixed Tate (mt) if it satisfies the conditions of the theorem.

Examples: \mathbb{A}^n, \mathbb{P}^n, hyperplane complements, reductive group schemes, homogeneous spaces, hyperplane complements, toral analogues,...
Theorem. (Kisin-L P&AMQ (Coates issue) 2006) Let K, S etc. be as above, and let X be a variety over K. Assume that for each prime $p \not\in S$, the eigenvalues of Frob_p on $H^j(X, \mathbb{Q}_\ell)$ are all of the form ζq_p^i ($i \in \mathbb{N}, \zeta$ a root of unity.), and that for any $i \in \mathbb{N}$, there are r_i of these.

Then $\text{Gr}^p_F \text{Gr}^q_F H^j(X_\sigma(\mathbb{C}), \mathbb{C})$ has dimension r_i if $p = q = i$, and is 0 otherwise.

NB The hypothesis is about eigenvalues of Frobenius, while the conclusion is about the Hodge filtration, which does not exist in ℓ-adic cohomology.

Say that X is mixed Tate (mt) if it satisfies the conditions of the theorem.

Examples: $\mathbb{A}^n, \mathbb{P}^n$, hyperplane complements, reductive group schemes, homogeneous spaces, hyperplane complements, toral analogues,...
Theorem. (Kisin-L P&AMQ (Coates issue) 2006) Let K, S etc. be as above, and let X be a variety over K. Assume that for each prime $p \not\in S$, the eigenvalues of Frob_p on $H^i(X, \mathbb{Q}_\ell)$ are all of the form ζq_p^i ($i \in \mathbb{N}$, ζ a root of unity.), and that for any $i \in \mathbb{N}$, there are r_i of these.

Then $\text{Gr}_F^p \text{Gr}_F^q H^i(X_{\sigma}(\mathbb{C}), \mathbb{C})$ has dimension r_i if $p = q = i$, and is 0 otherwise.

NB The hypothesis is about eigenvalues of Frobenius, while the conclusion is about the Hodge filtration, which does not exist in ℓ-adic cohomology.

Say that X is mixed Tate (mt) if it satisfies the conditions of the theorem.

Examples: $\mathbb{A}^n, \mathbb{P}^n$, hyperplane complements, reductive group schemes, homogeneous spaces, hyperplane complements, toral analogues,...
Theorem.

Theorem. (Kisin-L P&AMQ (Coates issue) 2006) Let K, S etc. be as above, and let X be a variety over K. Assume that for each prime $p \not\in S$, the eigenvalues of Frob_p on $H^i(X, \mathbb{Q}_\ell)$ are all of the form ζq_p^i ($i \in \mathbb{N}$, ζ a root of unity.), and that for any $i \in \mathbb{N}$, there are r_i of these.

Then $\text{Gr}_F^p \text{Gr}_F^q H^i(X_{\sigma}(\mathbb{C}), \mathbb{C})$ has dimension r_i if $p = q = i$, and is 0 otherwise.

NB The hypothesis is about eigenvalues of Frobenius, while the conclusion is about the Hodge filtration, which does not exist in ℓ-adic cohomology.

Say that X is mixed Tate (mt) if it satisfies the conditions of the theorem.

Examples: $\mathbb{A}^n, \mathbb{P}^n$, hyperplane complements, reductive group schemes, homogeneous spaces, hyperplane complements, toral analogues,...
A good source of mt varieties is:

Prop: $p : X \rightarrow Y$ a smooth morphism of smooth K-varieties such that each fibre $p^{-1}(y)$ is K-isomorphic to a fixed Z. Assume that the local systems $R^j p_* \mathbb{C}$ induced by $p : X_\sigma(\mathbb{C}) \rightarrow Y_\sigma(\mathbb{C})$ are constant for each j. If any 2 of X, Y, Z are mt then so is the third.
A good source of mt varieties is:

Prop: $p : X \to Y$ a smooth morphism of smooth K-varieties such that each fibre $p^{-1}(y)$ is K-isomorphic to a fixed Z. Assume that the local systems $R^j p_* \mathbb{C}$ induced by $p : X_{\sigma}(\mathbb{C}) \to Y_{\sigma}(\mathbb{C})$ are constant for each j. If any 2 of X, Y, Z are mt then so is the third.
A good source of mt varieties is:

Prop: $\rho : X \to Y$ a smooth morphism of smooth K-varieties such that each fibre $\rho^{-1}(y)$ is K-isomorphic to a fixed Z. Assume that the local systems $R^j \rho_* \mathbb{C}$ induced by $\rho : X_\sigma(\mathbb{C}) \to Y_\sigma(\mathbb{C})$ are constant for each j. If any 2 of X, Y, Z are mt then so is the third.
A good source of mt varieties is:

Prop: \(p : X \rightarrow Y \) a smooth morphism of smooth \(K \)-varieties such that each fibre \(p^{-1}(y) \) is \(K \)-isomorphic to a fixed \(Z \). Assume that the local systems \(R^j p_* \mathbb{C} \) induced by \(p : X_\sigma(\mathbb{C}) \rightarrow Y_\sigma(\mathbb{C}) \) are constant for each \(j \). If any 2 of \(X, Y, Z \) are mt then so is the third.
The following consequence is relevant to toric varieties.

Prop Suppose X is such that for almost all q, Frob_q has eigenvalues of absolute value $q^{i/2}$ on $H^i_c(X_{\bar{K}}, \bar{\mathbb{Q}}_{\ell})$. Then the following are equivalent:

(1) X is mt.
(2) $|X(\mathbb{F}_{q^m})| = P_X(q^m)$ for all $q, m \gg 0$, some $P_X(t) \in \mathbb{Z}[t]$. They imply that
(3) $H^j_c(X, \mathbb{Q}_{\ell}) = 0$ for j odd.
The following consequence is relevant to toric varieties.

Prop Suppose X is such that for almost all q, Frob_q has eigenvalues of absolute value $q^{i/2}$ on $H^i_c(X_{\overline{K}}, \overline{\mathbb{Q}}_\ell)$. Then the following are equivalent:

1. X is mt.
2. $|X(\mathbb{F}_{q^m})| = P_X(q^m)$ for all $q, m >> 0$, some $P_X(t) \in \mathbb{Z}[t]$.
3. $H^j_c(X, \mathbb{Q}_\ell) = 0$ for j odd.

They imply that
The following consequence is relevant to toric varieties.

Prop Suppose X is such that for almost all q, Frob_q has eigenvalues of absolute value $q^{\frac{i}{2}}$ on $H^i_c(X_{\overline{K}}, \overline{\mathbb{Q}}_\ell)$. Then the following are equivalent:

1. X is mt.
2. $|X(\mathbb{F}_{q^m})| = P_X(q^m)$ for all $q, m \gg 0$, some $P_X(t) \in \mathbb{Z}[t]$. They imply that
3. $H^j_c(X, \mathbb{Q}_\ell) = 0$ for j odd.
The following consequence is relevant to toric varieties.

Prop Suppose X is such that for almost all q, Frob$_q$ has eigenvalues of absolute value q^i on $H^i_c(X_{\overline{K}}, \overline{\mathbb{Q}}_\ell)$. Then the following are equivalent:

(1) X is mt.
(2) $|X(\mathbb{F}_{q^m})| = P_X(q^m)$ for all $q, m \gg 0$, some $P_X(t) \in \mathbb{Z}[t]$.

They imply that

(3) $H^j_c(X, \mathbb{Q}_\ell) = 0$ for j odd.
The following consequence is relevant to toric varieties.

Prop Suppose X is such that for almost all q, Frob_q has eigenvalues of absolute value $q^\frac{i}{2}$ on $H_c^i(X_{\overline{K}}, \overline{Q}_{\ell})$. Then the following are equivalent:

(1) X is mt.

(2) $|X(\mathbb{F}_{q^m})| = P_X(q^m)$ for all $q, m >> 0$, some $P_X(t) \in \mathbb{Z}[t]$.

They imply that

(3) $H_c^j(X, Q_{\ell}) = 0$ for j odd.
The following consequence is relevant to toric varieties.

Prop Suppose X is such that for almost all q, Frob$_q$ has eigenvalues of absolute value $q^{\frac{i}{2}}$ on $H^i_c(X_{\bar{K}}, \bar{Q}_\ell)$. Then the following are equivalent:

(1) X is mt.
(2) $|X(\mathbb{F}_{q^m})| = P_X(q^m)$ for all $q, m \gg 0$, some $P_X(t) \in \mathbb{Z}[t]$.

They imply that
(3) $H^j_c(X, \mathbb{Q}_\ell) = 0$ for j odd.
Toric Varieties

Given a lattice $N \subset \mathbb{R}^n$, a rational convex polyhedral cone (cpc) is a set of the form $\sigma := \{ \sum_{i=1}^{\ell} \lambda_i a_i \mid \lambda_i \geq 0 \}$, where the $a_i \in N$

Corresponding to σ there is an affine toric variety $T(\sigma)$, defined in terms of the dual lattice $M := N^\vee = \{ u \in (\mathbb{R}^n)^* \mid (v, u) \in \mathbb{Z} \ \forall \ v \in N \}$

If τ is a face of σ, then $T(\tau) \hookrightarrow T(\sigma)$.

Generally, if Δ is a fan of cpc’s, $T(\Delta) = \bigcup_{\sigma \in \Delta} T(\sigma)$,

with suitable identifications arising from the face relations.
Toric Varieties

Given a lattice \(N \subset \mathbb{R}^n \), a rational convex polyhedral cone (cpc) is a set of the form \(\sigma := \{ \sum_{i=1}^{r} \lambda_i a_i \mid \lambda_i \geq 0 \} \), where the \(a_i \in N \)

Corresponding to \(\sigma \) there is an affine toric variety \(T(\sigma) \), defined in terms of the dual lattice
\[M := N^\sim = \{ u \in (\mathbb{R}^n)^* \mid (v, u) \in \mathbb{Z} \ \forall \ v \in N \} \]

If \(\tau \) is a face of \(\sigma \), then \(T(\tau) \hookrightarrow T(\sigma) \).

Generally, if \(\Delta \) is a fan of cpc’s, \(T(\Delta) = \bigcup_{\sigma \in \Delta} T(\sigma) \),

with suitable identifications arising from the face relations.
Toric Varieties

Given a lattice \(N \subset \mathbb{R}^n \), a rational convex polyhedral cone (cpc) is a set of the form \(\sigma := \{ \sum_{i=1}^r \lambda_i a_i \mid \lambda_i \geq 0 \} \), where the \(a_i \in N \).

Corresponding to \(\sigma \) there is an affine toric variety \(T(\sigma) \), defined in terms of the dual lattice \(M := N^\vee = \{ u \in (\mathbb{R}^n)^* \mid (v, u) \in \mathbb{Z} \ \forall \ v \in N \} \).

If \(\tau \) is a face of \(\sigma \), then \(T(\tau) \hookrightarrow T(\sigma) \).

Generally, if \(\Delta \) is a fan of cpc’s, \(T(\Delta) = \bigcup_{\sigma \in \Delta} T(\sigma) \), with suitable identifications arising from the face relations.
Toric Varieties

Given a lattice $N \subset \mathbb{R}^n$, a rational convex polyhedral cone (cpc) is a set of the form $\sigma := \{ \sum_{i=1}^{r} \lambda_i a_i \mid \lambda_i \geq 0 \}$, where the $a_i \in N$.

Corresponding to σ there is an affine toric variety $\mathcal{T}(\sigma)$, defined in terms of the dual lattice

$$M := N^\vee := \{ u \in (\mathbb{R}^n)^* \mid (v, u) \in \mathbb{Z} \quad \forall \ v \in N \}$$

If τ is a face of σ, then $\mathcal{T}(\tau) \hookrightarrow \mathcal{T}(\sigma)$.

Generally, if Δ is a fan of cpc’s, $\mathcal{T}(\Delta) = \bigcup_{\sigma \in \Delta} \mathcal{T}(\sigma)$,

with suitable identifications arising from the face relations.
Given a lattice \(N \subset \mathbb{R}^n \), a rational convex polyhedral cone (cpc) is a set of the form \(\sigma := \{ \sum_{i=1}^{r} \lambda_i a_i \mid \lambda_i \geq 0 \} \), where the \(a_i \in N \).

Corresponding to \(\sigma \) there is an affine toric variety \(T(\sigma) \), defined in terms of the dual lattice \(M := N^\vee = \{ u \in (\mathbb{R}^n)^* \mid (v, u) \in \mathbb{Z} \ \forall \ v \in N \} \).

If \(\tau \) is a face of \(\sigma \), then \(T(\tau) \hookrightarrow T(\sigma) \).

Generally, if \(\Delta \) is a fan of cpc’s, \(T(\Delta) = \bigcup_{\sigma \in \Delta} T(\sigma) \), with suitable identifications arising from the face relations.
The toric variety associated with a root system.

Let $\Phi \subset \mathbb{R}^n := V$ be a crystallographic root system; take N to be the weight lattice, and Δ the set of cones (‘regions’) into which V is divided by the hyperplanes orthogonal to the roots.

Assume chosen a simple system $\Pi \subset \Phi$, and write W for the Weyl group of Φ.

The cones are then in bijection with the set of cosets wW_J ($w \in W, J \subseteq \Pi$).

The corresponding toric variety is defined over \mathbb{Z} and is denoted \mathcal{T}_W.

It has a W-action, and we’ll see how the method of rational points gives a very simple formula for $P_{\mathcal{T}_W}(w, t)$ ($w \in W$).
The toric variety associated with a root system.

Let $\Phi \subset \mathbb{R}^n \coloneqq V$ be a crystallographic root system; take N to be the weight lattice, and Δ the set of cones (‘regions’) into which V is divided by the hyperplanes orthogonal to the roots.

Assume chosen a simple system $\Pi \subset \Phi$, and write W for the Weyl group of Φ.

The cones are then in bijection with the set of cosets wW_J ($w \in W$, $J \subseteq \Pi$).

The corresponding toric variety is defined over \mathbb{Z} and is denoted \mathcal{T}_W.

It has a W-action, and we’ll see how the method of rational points gives a very simple formula for $P_{\mathcal{T}_W}(w, t)$ ($w \in W$).
Let $\Phi \subset \mathbb{R}^n := V$ be a crystallographic root system; take N to be the weight lattice, and Δ the set of cones (‘regions’) into which V is divided by the hyperplanes orthogonal to the roots.

Assume chosen a simple system $\Pi \subset \Phi$, and write W for the Weyl group of Φ.

The cones are then in bijection with the set of cosets wW_J ($w \in W$, $J \subseteq \Pi$).

The corresponding toric variety is defined over \mathbb{Z} and is denoted \mathcal{T}_W.

It has a W-action, and we’ll see how the method of rational points gives a very simple formula for $P_{\mathcal{T}_W}(w, t)$ ($w \in W$).
The toric variety associated with a root system.

Let $\Phi \subset \mathbb{R}^n := V$ be a crystallographic root system; take N to be the weight lattice, and Δ the set of cones (‘regions’) into which V is divided by the hyperplanes orthogonal to the roots.

Assume chosen a simple system $\Pi \subset \Phi$, and write W for the Weyl group of Φ.

The cones are then in bijection with the set of cosets wW_J ($w \in W$, $J \subseteq \Pi$).

The corresponding toric variety is defined over \mathbb{Z} and is denoted \mathcal{T}_W.

It has a W-action, and we’ll see how the method of rational points gives a very simple formula for $P_{\mathcal{T}_W}(w, t)$ ($w \in W$).
The toric variety associated with a root system.

Let \(\Phi \subset \mathbb{R}^n := V \) be a crystallographic root system; take \(N \) to be the weight lattice, and \(\Delta \) the set of cones ('regions') into which \(V \) is divided by the hyperplanes orthogonal to the roots.

Assume chosen a simple system \(\Pi \subset \Phi \), and write \(W \) for the Weyl group of \(\Phi \).

The cones are then in bijection with the set of cosets \(wW_J \) (\(w \in W, J \subseteq \Pi \)).

The corresponding toric variety is defined over \(\mathbb{Z} \) and is denoted \(T_W \).

It has a \(W \)-action, and we’ll see how the method of rational points gives a very simple formula for \(P_{T_w}(w, t) \) (\(w \in W \)).
Properties of the $T(\Delta)$.

- $T(\Delta)$ is complete iff $\bigcup_{\sigma \in \Delta} \sigma = V$. Thus T_W is complete.

- T_W is also non-singular, because each $\sigma \cap \mathbb{Z}\Phi$ is generated by part of a basis of $\mathbb{Z}\Phi$.

- The torus $T = \mathbb{C}^\times = T(\{0\})$ acts on T_W, with a dense orbit (itself).

- In general, each affine piece $T(\sigma)$ has a distinguished point P_{σ} whose T-orbit O_{σ} is a torus of dimension $n - \dim \sigma$. If $\sigma \sim wW_J$, write $O(wW_J)$ for the corresponding orbit; $O(wW_J) \simeq (\mathbb{C}^\times)^{|J|}$.

- The character group $X(O(wW_J))$ is naturally identified with $\mathbb{Z}\Phi_{wJ}$.
Properties of the $\mathcal{T}(\Delta)$.

- $\mathcal{T}(\Delta)$ is complete iff $\bigcup_{\sigma \in \Delta} \sigma = V$. Thus \mathcal{T}_W is complete.
- \mathcal{T}_W is also non-singular, because each $\sigma \cap \mathbb{Z}\Phi$ is generated by part of a basis of $\mathbb{Z}\Phi$.

- The torus $T = \mathbb{C}^\times = \mathcal{T}(\{0\})$ acts on \mathcal{T}_W, with a dense orbit (itself).
- In general, each affine piece $\mathcal{T}(\sigma)$ has a distinguished point P_σ whose T-orbit \mathcal{O}_σ is a torus of dimension $n - \dim \sigma$. If $\sigma \sim wW_J$, write $\mathcal{O}(wW_J)$ for the corresponding orbit; $\mathcal{O}(wW_J) \simeq (\mathbb{C}^\times)^{|J|}$.
- The character group $X(\mathcal{O}(wW_J))$ is naturally identified with $\mathbb{Z}\Phi_{wJ}$.
Properties of the $\mathcal{I}(\Delta)$.

- $\mathcal{I}(\Delta)$ is complete iff $\bigcup_{\sigma \in \Delta} \sigma = V$. Thus \mathcal{I}_W is complete.
- \mathcal{I}_W is also non-singular, because each $\sigma \cap \mathbb{Z}\Phi$ is generated by part of a basis of $\mathbb{Z}\Phi$.
- The torus $T = \mathbb{C}^\times = \mathcal{I}(\{0\})$ acts on \mathcal{I}_W, with a dense orbit (itself).
- In general, each affine piece $\mathcal{I}(\sigma)$ has a distinguished point P_σ whose T-orbit \mathcal{O}_σ is a torus of dimension $n - \dim \sigma$. If $\sigma \sim wW_J$, write $\mathcal{O}(wW_J)$ for the corresponding orbit; $\mathcal{O}(wW_J) \simeq (\mathbb{C}^\times)^{|J|}$.
- The character group $X(\mathcal{O}(wW_J))$ is naturally identified with $\mathbb{Z}\Phi_{wJ}$.
Properties of the $\mathcal{T}(\Delta)$.

- $\mathcal{T}(\Delta)$ is complete iff $\bigcup_{\sigma \in \Delta} \sigma = V$. Thus T_W is complete.
- T_W is also non-singular, because each $\sigma \cap \mathbb{Z}\Phi$ is generated by part of a basis of $\mathbb{Z}\Phi$.
- The torus $T = \mathbb{C}^\times = \mathcal{T}({\{0\}})$ acts on T_W, with a dense orbit (itself).
- In general, each affine piece $\mathcal{T}(\sigma)$ has a distinguished point P_σ whose T-orbit O_σ is a torus of dimension $n - \dim \sigma$. If $\sigma \sim wW_J$, write $O(wW_J)$ for the corresponding orbit; $O(wW_J) \simeq (\mathbb{C}^\times)^{|J|}$.
- The character group $X(O(wW_J))$ is naturally identified with $\mathbb{Z}\Phi_{wJ}$.
Properties of the \(\mathcal{T}(\Delta) \).

- \(\mathcal{T}(\Delta) \) is complete iff \(\bigcup_{\sigma \in \Delta} \sigma = V \). Thus \(\mathcal{T}_W \) is complete.

- \(\mathcal{T}_W \) is also non-singular, because each \(\sigma \cap \mathbb{Z}\Phi \) is generated by part of a basis of \(\mathbb{Z}\Phi \).

- The torus \(T = \mathbb{C}^\times = \mathcal{T}(\{0\}) \) acts on \(\mathcal{T}_W \), with a dense orbit (itself).

- In general, each affine piece \(\mathcal{T}(\sigma) \) has a distinguished point \(P_\sigma \) whose \(T \)-orbit \(O_\sigma \) is a torus of dimension \(n - \dim \sigma \). If \(\sigma \sim wW_J \), write \(O(wW_J) \) for the corresponding orbit; \(O(wW_J) \simeq (\mathbb{C}^\times)^{|J|} \).

- The character group \(X(O(wW_J)) \) is naturally identified with \(\mathbb{Z}\Phi_{wJ} \).
Action of W, Hodge Structure.

W permutes the orbits $O(wW_j)$: $xO(wW_j) = O(xwW_j)$.

Proposition. \mathcal{I}_W is mixed Tate, has only even non-zero cohomology, and Frob_q acts on $H^{2i}(\mathcal{I}_W, \mathbb{Q}_\ell)$ with all eigenvalues equal to q^i.

Proof: Fulton observed that in general, $|\mathcal{I}(\Delta)(\mathbb{F}_q)| = \sum_{\sigma \in \Delta} (q - 1)^{n - \dim \sigma}$, which is a polynomial in q. Since in our case \mathcal{I}_W is non-singular and projective, the eigenvalues of Frob on H^i all have absolute value $q^{i/2}$. The proposition now follows by our earlier result.

Also require the standard result: if $x \in W$, then $|\mathcal{T}(\bar{\mathbb{F}}_q)^{\text{Frob}_q}| = \det_V(q - x)$.

The proof of the next result is now straightforward.
Action of W, Hodge Structure.

W permutes the orbits $O(wW_j): xO(wW_j) = O(xwW_j)$.

Proposition. \mathcal{T}_W is mixed Tate, has only even non-zero cohomology, and Frob_q acts on $H^{2i}(\mathcal{T}_W, \mathbb{Q}_\ell)$ with all eigenvalues equal to q^i.

Proof: Fulton observed that in general, $|T(\Delta)(\mathbb{F}_q)| = \sum_{\sigma \in \Delta} (q - 1)^{n - \dim \sigma}$, which is a polynomial in q. Since in our case \mathcal{T}_W is non-singular and projective, the eigenvalues of Frob on H^i all have absolute value $q^{\frac{i}{2}}$. The proposition now follows by our earlier result.

Also require the standard result: if $x \in W$, then $|T(\mathbb{F}_q)^x\text{Frob}_q| = \det_V(q - x)$.

The proof of the next result is now straightforward.
Action of W, Hodge Structure.

W permutes the orbits $\mathcal{O}(wW_j)$: $x\mathcal{O}(wW_j) = \mathcal{O}(xwW_j)$.

Proposition. T_W is mixed Tate, has only even non-zero cohomology, and Frob_q acts on $H^{2i}(T_W, \mathbb{Q}_\ell)$ with all eigenvalues equal to q^i.

Proof: Fulton observed that in general, $|T(\Delta)(\mathbb{F}_q)| = \sum_{\sigma \in \Delta} (q - 1)^{n - \dim \sigma}$, which is a polynomial in q. Since in our case T_W is non-singular and projective, the eigenvalues of Frob on H^i all have absolute value q^i. The proposition now follows by our earlier result.

Also require the standard result: if $x \in W$, then $|T(\mathbb{F}_q)^x \text{Frob}_q| = \det_V(q - x)$.

The proof of the next result is now straightforward.
Action of W, Hodge Structure.

W permutes the orbits $O(wW_j) \colon xO(wW_j) = O(xwW_j)$.

Proposition. T_W is mixed Tate, has only even non-zero cohomology, and Frob_q acts on $H^{2i}(T_W, \mathbb{Q}_\ell)$ with all eigenvalues equal to q^i.

Proof: Fulton observed that in general, $|T(\Delta)(\mathbb{F}_q)| = \sum_{\sigma \in \Delta} (q - 1)^{n - \text{dim} \sigma}$, which is a polynomial in q. Since in our case T_W is non-singular and projective, the eigenvalues of Frob on H^i all have absolute value $q^{\frac{i}{2}}$. The proposition now follows by our earlier result.

Also require the standard result: if $x \in W$, then $|T(\mathbb{F}_q)^x\text{Frob}_q| = \det_V(q - x)$.

The proof of the next result is now straightforward.
Action of W, Hodge Structure.

W permutes the orbits $O(wW_J)$: $xO(wW_J) = O(xwW_J)$.

Proposition. T_W is mixed Tate, has only even non-zero cohomology, and Frob_q acts on $H^{2i}(T_W, \mathbb{Q}_\ell)$ with all eigenvalues equal to q^i.

Proof: Fulton observed that in general,
\[|T(\Delta)(\mathbb{F}_q)| = \sum_{\sigma \in \Delta} (q - 1)^{n - \dim \sigma}, \]
which is a polynomial in q. Since in our case T_W is non-singular and projective, the eigenvalues of Frob on H^i all have absolute value $q^{\frac{i}{2}}$. The proposition now follows by our earlier result.

Also require the standard result: if $x \in W$, then
\[|T(\mathbb{F}_q)^{x\text{Frob}_q}| = \det_V(q - x).\]

The proof of the next result is now straightforward.
Action of W, Hodge Structure.

W permutes the orbits $O(wW_j)$: $xO(wW_j) = O(xwW_j)$.

Proposition. \mathcal{T}_W is mixed Tate, has only even non-zero cohomology, and Frob_q acts on $H^{2i}(\mathcal{T}_W, \mathbb{Q}_\ell)$ with all eigenvalues equal to q^i.

Proof: Fulton observed that in general, $|\mathcal{T}(\Delta)(\mathbb{F}_q)| = \sum_{\sigma \in \Delta} (q - 1)^{n-\text{dim } \sigma}$, which is a polynomial in q. Since in our case \mathcal{T}_W is non-singular and projective, the eigenvalues of Frob on H^i all have absolute value $q^{\frac{i}{2}}$. The proposition now follows by our earlier result.

Also require the standard result: if $x \in W$, then $|\mathcal{T}(\bar{\mathbb{F}}_q)^x\text{Frob}_q| = \det_V(q - x)$.

The proof of the next result is now straightforward.
Action of W, Hodge Structure.

W permutes the orbits $O(wW_j) : xO(wW_j) = O(xwW_j)$.

Proposition. \mathcal{I}_W is mixed Tate, has only even non-zero cohomology, and Frob_q acts on $H^{2i}(\mathcal{I}_W, \mathbb{Q}_\ell)$ with all eigenvalues equal to q^i.

Proof: Fulton observed that in general,

$$|\mathcal{I}(\Delta)(\mathbb{F}_q)| = \sum_{\sigma \in \Delta} (q - 1)^{n - \dim \sigma},$$

which is a polynomial in q. Since in our case \mathcal{I}_W is non-singular and projective, the eigenvalues of Frob on H^i all have absolute value $q^{\frac{i}{2}}$. The proposition now follows by our earlier result.

Also require the standard result: if $x \in W$, then

$$|T(\mathbb{F}_q)^{x\text{Frob}_q}| = \det_V(q - x).$$

The proof of the next result is now straightforward.
Theorem. For $J \subseteq \Pi$, let $\gamma_J : W_J \to \mathbb{Z}[t]$ be the function $\gamma_J(w) = \det_{V_J}(t^2 - w)$. Then $P_{\mathcal{T}_W}(w, t) = \sum_i \text{trace}(w, H^i(\mathcal{T}_W, \mathbb{C}))t^i$ is given by

$$P_{\mathcal{T}_W}(w, t) = \sum_{J \subseteq \Pi} \text{Ind}_{W_J}^W \gamma_J(w).$$

Corollaries

- $(H^*(\mathcal{T}_W), 1)_W = (1 + t^2)^n$ (well known)
- $(H^*(\mathcal{T}_W), \varepsilon)_W = 0$
- $(H^*(\mathcal{T}_W), \rho)_W = (n - c(\Phi))t^2(1 + t^2)^{n-2}$
Theorem. For $J \subseteq \Pi$, let $\gamma_J : W_J \to \mathbb{Z}[t]$ be the function $\gamma_J(w) = \det_{W_J}(t^2 - w)$. Then

$$P_{T_W}(w, t) = \sum_i \text{trace}(w, H^i(T_W, \mathbb{C})t^i)$$

is given by

$$P_{T_W}(w, t) = \sum_{J \subseteq \Pi} \text{Ind}_{W_J}^W \gamma_J(w).$$

Corollaries

• $(H^*(T_W), 1)_W = (1 + t^2)^n$ (well known)
• $(H^*(T_W), \varepsilon)_W = 0$
• $(H^*(T_W), \rho)_W = (n - c(\Phi))t^2(1 + t^2)^{n-2}$
Theorem. For $J \subseteq \Pi$, let $\gamma_J : W_J \to \mathbb{Z}[t]$ be the function $\gamma_J(w) = \det_{V_J}(t^2 - w)$. Then

$$P_{\mathcal{T}_W}(w, t) = \sum_i \text{trace}(w, H^i(\mathcal{T}_W, \mathbb{C})) t^i$$

is given by

$$P_{\mathcal{T}_W}(w, t) = \sum_{J \subseteq \Pi} \text{Ind}_{W_J}^W \gamma_J(w).$$

Corollaries

- $(H^*(\mathcal{T}_W), 1)_W = (1 + t^2)^n$ (well known)
- $(H^*(\mathcal{T}_W), \varepsilon)_W = 0$
- $(H^*(\mathcal{T}_W), \rho)_W = (n - c(\Phi)) t^2 (1 + t^2)^{n-2}$
Theorem. For $J \subseteq \Pi$, let $\gamma_J : W_J \to \mathbb{Z}[t]$ be the function $\gamma_J(w) = \det_{V_J}(t^2 - w)$. Then $P_{T_W}(w, t) = \sum_i \text{trace}(w, H^i(T_W, \mathbb{C})t^i)$ is given by

$$P_{T_W}(w, t) = \sum_{J \subseteq \Pi} \text{Ind}^{W}_{W_J} \gamma_J(w).$$

Corollaries

- $(H^*(T_W), 1)_W = (1 + t^2)^n$ (well known)
- $(H^*(T_W), \varepsilon)_W = 0$
- $(H^*(T_W), \rho)_W = (n - c(\Phi))t^2(1 + t^2)^{n-2}$
Theorem. For \(J \subseteq \Pi \), let \(\gamma_J : W_J \rightarrow \mathbb{Z}[t] \) be the function \(\gamma_J(w) = \det_{V_J}(t^2 - w) \). Then \(P_{\mathcal{I}_W}(w, t) = \sum_i \text{trace}(w, H^i(\mathcal{I}_W, \mathbb{C})t^i) \) is given by

\[
P_{\mathcal{I}_W}(w, t) = \sum_{J \subseteq \Pi} \text{Ind}_{W_J}^W \gamma_J(w).
\]

Corollaries

- \((H^*(\mathcal{I}_W), 1)_W = (1 + t^2)^n \) (well known)
- \((H^*(\mathcal{I}_W), \varepsilon)_W = 0 \)
- \((H^*(\mathcal{I}_W), \rho)_W = (n - c(\Phi))t^2(1 + t^2)^{n-2} \)
Theorem. For $J \subseteq \Pi$, let $\gamma_J : W_J \to \mathbb{Z}[t]$ be the function $\gamma_J(w) = \det_{V_J}(t^2 - w)$. Then

$$P_{T_W}(w, t) = \sum_i \text{trace}(w, H^i(T_W, \mathbb{C})t^i)$$
is given by

$$P_{T_W}(w, t) = \sum_{J \subseteq \Pi} \text{Ind}_{W_J}^W \gamma_J(w).$$

Corollaries

- $(H^*(T_W), 1)_W = (1 + t^2)^n$ (well known)
- $(H^*(T_W), \varepsilon)_W = 0$
- $(H^*(T_W), \rho)_W = (n - c(\Phi))t^2(1 + t^2)^{n-2}$
Theorem. For $J \subseteq \Pi$, let $\gamma_J : W_J \to \mathbb{Z}[t]$ be the function $\gamma_J(w) = \det_{V_J}(t^2 - w)$. Then

$$P_{T_W}(w, t) = \sum_i \text{trace}(w, H^i(T_W, \mathbb{C}))t^i$$

is given by

$$P_{T_W}(w, t) = \sum_{J \subseteq \Pi} \text{Ind}_{W_J}^{W} \gamma_J(w).$$

Corollaries

\bullet $(H^*(T_W), 1)_W = (1 + t^2)^n$ (well known)

\bullet $(H^*(T_W), \varepsilon)_W = 0$

\bullet $(H^*(T_W), \rho)_W = (n - c(\Phi))t^2(1 + t^2)^{n-2}$
Theorem. For $J \subseteq \Pi$, let $\gamma_J : W_J \to \mathbb{Z}[t]$ be the function $\gamma_J(w) = \det_{V_J}(t^2 - w)$. Then

$$P_{\mathcal{T}_W}(w, t) = \sum_i \text{trace}(w, H^i(\mathcal{T}_W, \mathbb{C})t^i)$$

is given by

$$P_{\mathcal{T}_W}(w, t) = \sum_{J \subseteq \Pi} \text{Ind}_{W_J}^W \gamma_J(w).$$

Corollaries • $(H^*(\mathcal{T}_W), 1)_W = (1 + t^2)^n$ (well known)
• $(H^*(\mathcal{T}_W), \varepsilon)_W = 0$
• $(H^*(\mathcal{T}_W), \rho)_W = (n - c(\Phi))t^2(1 + t^2)^{n-2}$
The case $t = 1$

In 1968 (or earlier) R. Steinberg proved

Let $\tilde{\Pi} = \Pi \Pi \{ -\alpha_h \}$, where α_h is the highest root. Then writing $r = |\Pi|,$

$$\det v(1 - w) = \sum_{J \subseteq \tilde{\Pi}} (-1)^r |J| \text{Ind}_{W_J}^W(1)$$

This may be used to express $H^* (\mathcal{T}_W)$ as a sum of permutation characters (cf. Stembridge (1995)).

In type A one can do better: one has the following “q-analogue” of Steinberg’s formula:

$$\det v(q - w) = \sum_{J \subseteq \tilde{\Pi}} (-1)^r |J| \frac{[J]_q}{n} \text{Ind}_{W_J}^W(1),$$

where $[J]_q = \sum_{i=1}^c [\left| J_i \right| + 1]_q + n - |J| - c$ if J has connected components $J_1, \ldots, J_c.$
The case \(t = 1 \)

In 1968 (or earlier) R. Steinberg proved

Let \(\tilde{\Pi} = \Pi \amalg \{-\alpha_h\} \), where \(\alpha_h \) is the highest root. Then writing \(r = |\Pi| \),

\[
\det \nu(1 - w) = \sum_{J \subsetneq \tilde{\Pi}} (-1)^{r - |J|} \text{Ind}_{W_J}^W(1)
\]

This may be used to express \(H^*(T_W) \) as a sum of permutation characters (cf. Stembridge (1995)).

In type \(A \) one can do better: one has the following “\(q \)-analogue” of Steinberg’s formula:

\[
\det \nu(q - w) = \sum_{J \subsetneq \tilde{\Pi}} (-1)^{r - |J|} \frac{[J]_q}{n} \text{Ind}_{W_J}^W(1),
\]

where \([J]_q = \sum_{i=1}^c [\sum_{i=1}^c (|J_i| + 1)]_q + n - |J| - c\) if \(J \) has connected components \(J_1, \ldots, J_c \).
The case \(t = 1 \)

In 1968 (or earlier) R. Steinberg proved

Let \(\tilde{\Pi} = \Pi \amalg \{-\alpha_h\} \), where \(\alpha_h \) is the highest root. Then writing \(r = |\Pi| \),

\[
\det_v (1 - w) = \sum_{J \subsetneq \tilde{\Pi}} (-1)^{r - |J|} \text{Ind}_{W_J}^W (1)
\]

This may be used to express \(H^* (T_W) \) as a sum of permutation characters (cf. Stembridge (1995)).

In type \(A \) one can do better: one has the following “\(q \)-analogue” of Steinberg’s formula:

\[
\det_v (q - w) = \sum_{J \subsetneq \tilde{\Pi}} (-1)^{r - |J|} \frac{[J]_q}{n} \text{Ind}_{W_J}^W (1),
\]

where \([J]_q = \sum_{i=1}^c [\left| J_i \right| + 1]q + n - |J| - c \) if \(J \) has connected components \(J_1, \ldots, J_c \).
The case $t = 1$

In 1968 (or earlier) R. Steinberg proved

Let $\tilde{\Pi} = \Pi \amalg \{-\alpha_h\}$, where α_h is the highest root. Then writing $r = |\Pi|$,

$$\det \nu(1 - w) = \sum_{J \subsetneq \tilde{\Pi}} (-1)^{r - |J|} \text{Ind}^{W}_{W_J}(1)$$

This may be used to express $H^*(T_W)$ as a sum of permutation characters (cf. Stembridge (1995)).

In type A one can do better: one has the following “q-analogue” of Steinberg’s formula:

$$\det \nu(q - w) = \sum_{J \subsetneq \tilde{\Pi}} (-1)^{r - |J|} \frac{[J]_q}{n} \text{Ind}^{W}_{W_J}(1),$$

where $[J]_q = \sum_{i=1}^{c} [\sum_{j} |J_i| + 1]_q + n - |J| - c$ if J has connected components J_1, \ldots, J_c.
The case $t = 1$

In 1968 (or earlier) R. Steinberg proved

Let $\tilde{\Pi} = \Pi \Pi \{-\alpha_h\}$, where α_h is the highest root. Then writing $r = |\Pi|$,

$$\det V(1 - w) = \sum_{J \subsetneq \tilde{\Pi}} (-1)^{r - |J|} \text{Ind}_{W_J}^W(1)$$

This may be used to express $H^*(\mathcal{I}_W)$ as a sum of permutation characters (cf. Stembridge (1995)).

In type A one can do better: one has the following “q-analogue” of Steinberg’s formula:

$$\det V(q - w) = \sum_{J \subsetneq \tilde{\Pi}} (-1)^{r - |J|} \frac{[J]_q}{n} \text{Ind}_{W_J}^W(1),$$

where $[J]_q = \sum_{i=1}^c [\sum_{i=1}^c [J_i] + 1]_q + n - |J| - c$ if J has connected components J_1, \ldots, J_c.
The case $t = 1$

In 1968 (or earlier) R. Steinberg proved

Let $\tilde{\Pi} = \Pi \Pi \{ -\alpha_h \}$, where α_h is the highest root. Then writing

$r = |\Pi|,$

$$\det V(1 - w) = \sum_{J \subset \tilde{\Pi}} (-1)^{r-|J|} \text{Ind}_{W_J}^W(1)$$

This may be used to express $H^*(T_W)$ as a sum of permutation characters (cf. Stembridge (1995)).

In type A one can do better: one has the following “q-analogue” of Steinberg’s formula:

$$\det V(q - w) = \sum_{J \subset \tilde{\Pi}} (-1)^{r-|J|} \frac{[J]_q}{n} \text{Ind}_{W_J}^W(1),$$

where $[J]_q = \sum_{i=1}^c [(|J_i| + 1]_q + n - |J| - c$ if J has connected components $J_1, \ldots, J_c.$
Type A.

This may be used to express the result for type A in terms of the ring $\Lambda[[t]]$, where $\Lambda = \bigoplus_{n \geq 0} R_n$, and R_n is the character ring of Sym_n.

Write $\tau_{n,q} = \sum_i \text{trace}(-, H^{2i}(T_W)) q^i \in R_n[q]$. Then

$$\sum_{n \geq 0} \tau_{n,q} t^n = \frac{1 + X(t)}{1 - (X_q(t) - X(t))} \in \Lambda[q][[t]].$$

where $X(t) = \sum_{i \geq 1} z_i t^i$ and $X_q(t) = \sum_{i \geq 1} [i]_q z_i t^i$.

where $z_i = 1_{\text{Sym}_i} \in R_i$.

This latter formula is well known and has been discovered in many forms. It shows that in type A, $H^i(T)$ is a positive integral combination of permutation characters.
This may be used to express the result for type A in terms of the ring $\Lambda[[t]]$, where $\Lambda = \bigoplus_{n \geq 0} R_n$, and R_n is the character ring of Sym_n.

Write $\tau_{n,q} = \sum_i \text{trace}(-, H^{2i}(\mathcal{I}_W))q^i \in \mathbb{R}_n[q]$. Then

$$\sum_{n \geq 0} \tau_{n,q} t^n = \frac{1 + X(t)}{1 - (X_q(t) - X(t))} \in \Lambda[q][[t]].$$

where $X(t) = \sum_{i \geq 1} z_i t^i$ and

$X_q(t) = \sum_{i \geq 1} [i]_q z_it^i$.

where $z_i = 1_{\text{Sym}_i} \in R_i$.

This latter formula is well known and has been discovered in many forms. It shows that in type A, $H^i(\mathcal{I})$ is a positive integral combination of permutation characters.
Type A.

This may be used to express the result for type A in terms of the ring $\Lambda[[t]]$, where $\Lambda = \bigoplus_{n \geq 0} R_n$, and R_n is the character ring of Sym_n

Write $\tau_{n,q} = \sum_i \text{trace}(-, H^{2i}(T_W))q^i \in \mathbb{R}_n[q]$.

Then

$$\sum_{n \geq 0} \tau_{n,q} t^n = \frac{1 + X(t)}{1 - (X_q(t) - X(t))} \in \Lambda[q][[t]].$$

where $X(t) = \sum_{i \geq 1} z_i t^i$ and $X_q(t) = \sum_{i \geq 1} [i]_q z_i t^i$.

where $z_i = 1_{\text{Sym}_i} \in R_i$.

This latter formula is well known and has been discovered in many forms. It shows that in type A, $H^i(T)$ is a positive integral combination of permutation characters.
Type A.

This may be used to express the result for type A in terms of the ring $\Lambda[[t]]$, where $\Lambda = \bigoplus_{n \geq 0} R_n$, and R_n is the character ring of Sym_n.

Write $\tau_{n,q} = \sum_i \text{trace}(-, H^{2i}(\mathcal{I}_W)) q^i \in R_n[q]$. Then

$$\sum_{n \geq 0} \tau_{n,q} t^n = \frac{1 + X(t)}{1 - (X_q(t) - X(t))} \in \Lambda[q][[t]].$$

where $X(t) = \sum_{i \geq 1} z_i t^i$ and $X_q(t) = \sum_{i \geq 1} [i]_q z_i t^i$. where $z_i = 1_{\text{Sym}_i} \in R_i$.

This latter formula is well known and has been discovered in many forms. It shows that in type A, $H^i(\mathcal{I})$ is a positive integral combination of permutation characters.
Type A.

This may be used to express the result for type A in terms of the ring $\Lambda[[t]]$, where $\Lambda = \bigoplus_{n \geq 0} R_n$, and R_n is the character ring of Sym_n.

Write $\tau_{n,q} = \sum_i \text{trace}(\mathcal{H}^i(TW)) q^i \in \mathbb{R}_n[q]$.

Then

$$\sum_{n \geq 0} \tau_{n,q} t^n = \frac{1 + X(t)}{1 - (X_q(t) - X(t))} \in \Lambda[q][[t]].$$

where $X(t) = \sum_{i \geq 1} z_i t^i$ and $X_q(t) = \sum_{i \geq 1} [i]_q z_i t^i$.

where $z_i = 1_{\text{Sym}_i} \in R_i$.

This latter formula is well known and has been discovered in many forms. It shows that in type A, $H^i(T)$ is a positive integral combination of permutation characters.
Type A.

This may be used to express the result for type A in terms of the ring $\Lambda[[t]]$, where $\Lambda = \bigoplus_{n \geq 0} R_n$, and R_n is the character ring of Sym_n

Write $\tau_{n,q} = \sum_i \text{trace}(-, H^{2i}(\mathcal{T}_W)) q^i \in R_n[q]$.

Then

$$\sum_{n \geq 0} \tau_{n,q} t^n = \frac{1 + X(t)}{1 - (X_q(t) - X(t))} \in \Lambda[q][[t]].$$

where $X(t) = \sum_{i \geq 1} z_i t^i$ and

$X_q(t) = \sum_{i \geq 1} [i]_q z_i t^i$.

where $z_i = 1_{\text{Sym}_i} \in R_i$.

This latter formula is well known and has been discovered in many forms. It shows that in type A, $H^i(\mathcal{T})$ is a positive integral combination of permutation characters.
Type A.

This may be used to express the result for type A in terms of the ring $\Lambda[[t]]$, where $\Lambda = \bigoplus_{n \geq 0} R_n$, and R_n is the character ring of Sym_n.

Write $\tau_{n,q} = \sum_i \text{trace}(-, H^{2i}(\mathcal{T}_W)) q^i \in \mathbb{R}_n[q]$.

Then
\[
\sum_{n \geq 0} \tau_{n,q} t^n = \frac{1 + X(t)}{1 - (X_q(t) - X(t))} \in \Lambda[q][[t]].
\]

where $X(t) = \sum_{i \geq 1} z_i t^i$ and $X_q(t) = \sum_{i \geq 1} [i]_q z_i t^i$.

where $z_i = 1_{\text{Sym}_i} \in R_i$.

This latter formula is well known and has been discovered in many forms. It shows that in type A, $H^i(\mathcal{T})$ is a positive integral combination of permutation characters.
Varieties over \(\mathbb{R}\)–the real case.

When \(K \subset \mathbb{R}\), the variety \(X\) also has an associated manifold \(X(\mathbb{R})\) of real points.

If \(X\) is mt, then \(P_X(-1)\) is related to the Euler characteristic of \(X(\mathbb{R})\) in general.
Varieties over \mathbb{R}–the real case.

When $K \subset \mathbb{R}$, the variety X also has an associated manifold $X(\mathbb{R})$ of real points.

If X is mt, then $P_X(-1)$ is related to the Euler characteristic of $X(\mathbb{R})$ in general.
The real case $\mathcal{T}(\mathbb{R})$

Since the \mathcal{T}_W are defined over \mathbb{Z}, we may consider their real points $\mathcal{T}(\mathbb{R})$. These are compact connected smooth real manifolds.

In joint work with A. Henderson, we do not yet have the graded representation of W on $H^*(\mathcal{T}_W(\mathbb{R}))$, but we do have the equivariant Euler characteristic, which shows that the situation is quite different from the complex points.

Define the generalised character $\psi_W \in R(W)$ by

$$\psi_W(w) = (-1)^r \varepsilon(w) \pi^{(2)}_W(w),$$

where ε is the sign character of W, and $\pi^{(2)}_W$ is the permutation character of W on the finite set $N/2N$ ($N=$wt lattice).

Our result is
The real case $\mathcal{T}(\mathbb{R})$

Since the \mathcal{T}_W are defined over \mathbb{Z}, we may consider their real points $\mathcal{T}(\mathbb{R})$. These are compact connected smooth real manifolds.

In joint work with A. Henderson, we do not yet have the graded representation of W on $H^*(\mathcal{T}_W(\mathbb{R}))$, but we do have the equivariant Euler characteristic, which shows that the situation is quite different from the complex points.

Define the generalised character $\psi_W \in R(W)$ by

$$
\psi_W(w) = (-1)^r \varepsilon(w) \pi_W^{(2)}(w),
$$

where ε is the sign character of W, and $\pi_W^{(2)}$ is the permutation character of W on the finite set $N/2N$ ($N=\text{wt lattice}$).

Our result is
The real case $\mathcal{T}(\mathbb{R})$

Since the \mathcal{T}_W are defined over \mathbb{Z}, we may consider their real points $\mathcal{T}(\mathbb{R})$. These are compact connected smooth real manifolds.

In joint work with A. Henderson, we do not yet have the graded representation of W on $H^*(\mathcal{T}_W(\mathbb{R}))$, but we do have the equivariant Euler characteristic, which shows that the situation is quite different from the complex points.
Define the generalised character $\psi_W \in R(W)$ by

$$
\psi_W(w) = (-1)^r \varepsilon(w) \pi_W^{(2)}(w),
$$

where ε is the sign character of W, and $\pi_W^{(2)}$ is the permutation character of W on the finite set $N/2N$ ($N=$wt lattice).

Our result is
The real case $\mathcal{T}(\mathbb{R})$

Since the \mathcal{T}_W are defined over \mathbb{Z}, we may consider their real points $\mathcal{T}(\mathbb{R})$. These are compact connected smooth real manifolds.

In joint work with A. Henderson, we do not yet have the graded representation of W on $H^*(\mathcal{T}_W(\mathbb{R}))$, but we do have the equivariant Euler characteristic, which shows that the situation is quite different from the complex points.

Define the generalised character $\psi_W \in R(W)$ by

$$\psi_W(w) = (-1)^r \varepsilon(w) \pi_W^{(2)}(w),$$

where ε is the sign character of W, and $\pi_W^{(2)}$ is the permutation character of W on the finite set $N/2N$ ($N=\text{wt lattice}$).

Our result is
The real case $\mathcal{T}(\mathbb{R})$

Since the \mathcal{T}_W are defined over \mathbb{Z}, we may consider their real points $\mathcal{T}(\mathbb{R})$. These are compact connected smooth real manifolds.

In joint work with A. Henderson, we do not yet have the graded representation of W on $H^*(\mathcal{T}_W(\mathbb{R}))$, but we do have the equivariant Euler characteristic, which shows that the situation is quite different from the complex points.

Define the generalised character $\psi_W \in R(W)$ by

$$\psi_W(w) = (-1)^{r} \varepsilon(w) \pi^{(2)}_W(w),$$

where ε is the sign character of W, and $\pi^{(2)}_W$ is the permutation character of W on the finite set $N/2N$ ($N=$wt lattice).

Our result is
The real case $\mathcal{T}(\mathbb{R})$

Since the \mathcal{T}_W are defined over \mathbb{Z}, we may consider their real points $\mathcal{T}(\mathbb{R})$. These are compact connected smooth real manifolds.

In joint work with A. Henderson, we do not yet have the graded representation of W on $H^*(\mathcal{T}_W(\mathbb{R}))$, but we do have the equivariant Euler characteristic, which shows that the situation is quite different from the complex points.

Define the generalised character $\psi_W \in R(W)$ by

$$\psi_W(w) = (-1)^r \varepsilon(w) \pi^{(2)}_W(w),$$

where ε is the sign character of W, and $\pi^{(2)}_W$ is the permutation character of W on the finite set $N/2N$ ($N=\text{wt lattice}$).

Our result is
Thm The equivariant Euler characteristic Λ_W of $\mathcal{I}_W(\mathbb{R})$ is given as an element of the Grothendieck ring $R(W)$ by

$$\Lambda_W = \sum_{J \subseteq \Pi} \text{Ind}_{W_J}^W \psi_J,$$

EXAMPLE: $W = \text{Sym}_n$

<table>
<thead>
<tr>
<th>n</th>
<th>ψ_{Sym_n}</th>
<th>Λ_{Sym_n}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>-2ε</td>
<td>$1 - \varepsilon$</td>
</tr>
<tr>
<td>3</td>
<td>$\rho + 2\varepsilon$</td>
<td>$1 - \rho - \varepsilon$</td>
</tr>
<tr>
<td>4</td>
<td>$-3\varepsilon - \varepsilon \rho - \sigma$</td>
<td>$1 - \rho + \sigma$</td>
</tr>
</tbody>
</table>

Here ε is the sign character, ρ is the reflection character, and σ denotes the two-dimensional irreducible character of Sym_4.
Thm The equivariant Euler characteristic Λ_W of $\mathcal{I}_W(\mathbb{R})$ is given as an element of the Grothendieck ring $R(W)$ by

$$\Lambda_W = \sum_{J \subseteq \Pi} \text{Ind}_{W_J}^W \psi_J,$$

EXAMPLE: $W = \text{Sym}_n$

<table>
<thead>
<tr>
<th>n</th>
<th>ψ_{Sym_n}</th>
<th>Λ_{Sym_n}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>-2ε</td>
<td>$1 - \varepsilon$</td>
</tr>
<tr>
<td>3</td>
<td>$\rho + 2\varepsilon$</td>
<td>$1 - \rho - \varepsilon$</td>
</tr>
<tr>
<td>4</td>
<td>$-3\varepsilon - \varepsilon\rho - \sigma$</td>
<td>$1 - \rho + \sigma$</td>
</tr>
</tbody>
</table>

Here ε is the sign character, ρ is the reflection character, and σ denotes the two-dimensional irreducible character of Sym_4.
The equivariant Euler characteristic Λ_W of $\mathcal{I}_W(\mathbb{R})$ is given as an element of the Grothendieck ring $R(W)$ by

$$\Lambda_W = \sum_{J \subseteq \Pi} \text{Ind}_W^W \psi_J,$$

EXAMPLE: $W = \text{Sym}_n$

<table>
<thead>
<tr>
<th>n</th>
<th>ψ_{Sym_n}</th>
<th>Λ_{Sym_n}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>-2ε</td>
<td>$1 - \varepsilon$</td>
</tr>
<tr>
<td>3</td>
<td>$\rho + 2\varepsilon$</td>
<td>$1 - \rho - \varepsilon$</td>
</tr>
<tr>
<td>4</td>
<td>$-3\varepsilon - \varepsilon \rho - \sigma$</td>
<td>$1 - \rho + \sigma$</td>
</tr>
</tbody>
</table>

Here ε is the sign character, ρ is the reflection character, and σ denotes the two-dimensional irreducible character of Sym_4.
Thm The equivariant Euler characteristic Λ_W of $T_W(\mathbb{R})$ is given as an element of the Grothendieck ring $R(W)$ by

$$\Lambda_W = \sum_{J \subseteq \Pi} \text{Ind}_{W^J}^W \psi_J,$$

EXAMPLE: $W = \text{Sym}_n$

<table>
<thead>
<tr>
<th>n</th>
<th>ψ_{Sym_n}</th>
<th>Λ_{Sym_n}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>-2ε</td>
<td>$1 - \varepsilon$</td>
</tr>
<tr>
<td>3</td>
<td>$\rho + 2\varepsilon$</td>
<td>$1 - \rho - \varepsilon$</td>
</tr>
<tr>
<td>4</td>
<td>$-3\varepsilon - \varepsilon\rho - \sigma$</td>
<td>$1 - \rho + \sigma$</td>
</tr>
</tbody>
</table>

Here ε is the sign character, ρ is the reflection character, and σ denotes the two-dimensional irreducible character of Sym_4.
References

References

References

G I Lehrer, “Coxeter group actions on the cohomology of toric varieties”, in press *Ann. Fourier*
References

G I Lehrer, “Coxeter group actions on the cohomology of toric varieties”, in press *Ann. Fourier*
References

G I Lehrer, “Coxeter group actions on the cohomology of toric varieties”, *in press* *Ann. Fourier*