Bäcklund Transformations and Darboux Integrability for Nonlinear Wave Equations

J. Clelland1 T. Ivey2

1University of Colorado, Boulder
2College of Charleston

May 2008
Outline

A Motivating Example

Definitions & Results
 The method of Darboux
 Bäcklund transformations
 Main result

‘Backlund implies Darboux’
 G-structure for BTs between MA equations
 Implications of a BT to the wave equation

‘Darboux implies Bäcklund’
 G-structure for Darboux-integrable PDE
 EDS for BT to the wave equation
 Solving for a BT for particular equations

Open Problems
Two ways to solve Liouville’s equation $u_{xy} = e^u$

1. **Use Darboux integrability**: For any solution,

$$u_{xx} - \frac{1}{2}(u_x)^2 = f(x), \quad u_{yy} - \frac{1}{2}(u_y)^2 = g(y)$$

for some functions $f(x), g(y)$; conversely, given f, g, can solve these Riccati ODEs for u_x, u_y, and integrate to get u.

2. **Use a Bäcklund transformation (BT)**: Suppose $u(x, y)$ and $z(x, y)$ satisfy the system

$$u_x - z_x = 2 \exp((u + z)/2)$$
$$u_y + z_y = \exp((u - z)/2);$$

then u satisfies Liouville iff z satisfies $z_{xy} = 0$ (wave eqn.).

–set $z = F(x) + G(y)$ and solve compatible ODEs for u in x- and y-directions

–both explicitly determine u by solving ODE, given 2 functions

–what’s the relationship between these methods?
Darboux Integrability

Defn (Bryant-Griffiths-Hsu) A *hyperbolic EDS of class k* on M^{k+4} is locally generated by 1-forms $\eta_0, \ldots, \eta_{k-1}$ and two independent decomposable 2-forms Ω_1, Ω_2 (whose factors, together with the η’s, form a coframe on M).

– special case for $k = 1$: a hyperbolic *Monge-Ampère* (MA) system on M^5, locally generated by Ω_1, Ω_2 and a contact form η

– prolongation of class k hyperbolic EDS is hyperbolic of class $k + 2$

– define *characteristic system* $K_i, i = 1, 2$, spanned by the η’s and the factors of Ω_i

Defn A hyperbolic EDS is *Darboux integrable* if K_1 and K_2 both contain Frobenius systems of rank 2, transverse to the span of the η’s, and Darboux *semi-integrable* if only one of the K_i has this property.

– for $k = 1$, *Monge-integrable* means semi-integrable

– the only Darboux integrable hyperbolic MA system is the wave equation (up to contact equiv.)
Darboux Example: Liouville’s equation \(u_{xy} = e^u \)

–use Monge notation \(p = u_x, q = u_y, r = u_{xx}, s = u_{xy}, t = u_{yy} \)

–as a MA system on \(\mathbb{R}^5 \), generators are

\[
\eta = du - p
dx - q
dy,
\]

\[
\Omega_1 = (dp - e^u
dy) \wedge dx,
\]

\[
\Omega_2 = (dq - e^u
dx) \wedge dy
\]

–1st prolongation on \(\mathbb{R}^7 \) generated by \(\eta_0 = \eta \) and

\[
\eta_1 = dp - r
dx - e^u
dy,
\]

\[
\eta_2 = dq - e^u
dx - t
dy,
\]

\[
\Omega_1 = (dr - pe^u
dy) \wedge dx,
\]

\[
\Omega_2 = (dt - qe^u
dx) \wedge dy.
\]

–characteristic systems of the prolongation:

\[
K_1 = \{ \eta_0, \eta_1, \eta_2, dr - pe^u
dy, dx \} \supset \{ d(r - \frac{1}{2}p^2), dx \}
\]

\[
K_2 = \{ \eta_0, \eta_1, \eta_2, dt - qe^u
dx, dy \} \supset \{ d(t - \frac{1}{2}q^2), dy \}
\]

–any integral surface is foliated by integrals of \(K_1 \) and \(K_2 \)

–so, any solution has \(r - \frac{1}{2}p^2 = f(x) \) and \(t - \frac{1}{2}q^2 = g(y) \) for some \(f, g \)

–there are lots more examples; what about classification?
Classification of Darboux-Integrable MA Equations

Goursat (1898) classified the nonlinear MA equations of the form \(s = f(x, y, u, p, q) \) that are Darboux-integrable at 2-jet level (i.e., after one prolongation), up to contact transformations preserving the form:

(† means ‘Monge-integrable’)

\[
(x + y)s = 2\sqrt{pq}, \tag{I}
\]
\[
u s = \sqrt{1 + p^2}\sqrt{1 + q^2}, \tag{II}
\]
\[
(y + z)s = \sqrt{1 + p^2}\sqrt{1 + q^2}, \tag{III}
\]
\[
u s = \pm \phi(p)\psi(q), \quad \text{where } \phi(x), \psi(x) \text{ satisfy } df/dx \pm f/x = K \neq 0, \tag{IV}
\]
\[
(x + y)s = \alpha(p)\alpha(q), \quad \text{where } \alpha \text{ satisfies } \alpha(x) - 1 = \exp(x - \alpha(x)), \tag{V}
\]
\[
p - us/q = f(x, s/q), \tag{VI†}
\]
\[
s = e^{ut}\sqrt{1 + p^2}, \tag{VII}
\]
\[
p - y s = f(x, s), \tag{VIII†}
\]
\[
s = e^{ut}, \quad \text{(Liouville’s equation)} \tag{IX}
\]
\[
s = pe^{ut}, \tag{X†}
\]
\[
s = \left((u - x)^{-1} + (u - y)^{-1} \right) pq. \tag{XI}
\]

Vessiot (1939-42) re-derived Goursat’s classification using Lie theory, showing that (VI) and (VIII) are contact-equivalent to respectively (X) and

\[
s = p/(x + y). \tag{VIII*}
\]
Classification, continued

Vessiot also classified linear Darboux-integrable equations, obtaining

\[s = a(x, y)p + b(x, y)q - a(x, y)b(x, y)u, \] (XII)

where \(h(x, y) = -a_x \) and \(k(x, y) = -b_y \) must satisfy

\[(\ln h)_{xy} = 2h - k, \quad (\ln k)_{xy} = 2k - h \] with \(h \neq k \), and

\[s = 2u/(x + y)^2. \] (XIII)

–Juráš (2000) showed that any hyperbolic MA eqn that’s Darboux integrable at the 2-jet level must be contact-equivalent to the form \(s = f(x, y, u, p, q) \), hence on the Goursat-Vessiot list

–Biesecker (2004) re-derived the Goursat-Vessiot list using method of equivalence, characterizing each equation in terms of Laplace invariants
Bäcklund transformations

Defn (Goursat, 1925) A *Bäcklund transformation* between two hyperbolic MA systems, on M and \overline{M}, is defined by a submfdld $B^6 \subset M \times \overline{M}$ such that:

![diagram](image)

- projections $\pi : B \to M$ and $\overline{\pi} : B \to \overline{M}$ are submersions
- pullbacks of generator 2-forms satisfy
 $$\{\Omega_1, \Omega_2\} \equiv \{\overline{\Omega}_1, \overline{\Omega}_2\} \equiv \{d\eta, d\overline{\eta}\} \mod \eta, \overline{\eta}$$

--corresponds to Goursat’s *type B*$_3$: if $\Sigma^2 \subset M$ is an integral of \mathcal{I}, then $\overline{\pi}^*\overline{\mathcal{I}}$ is Frobenius on $\pi^{-1}(\Sigma)$, giving a 1-parameter family of integrals for $\overline{\mathcal{I}}$, and vice-versa

--e.g., for Liouville’s equation on M and the wave equation on \overline{M} (with coords. X, Y, Z, P, Q), $B^6 \subset M \times \overline{M}$ is cut out by the equations

$$X = x, \quad Y = y, \quad p-P = 2 \exp((u+Z)/2), \quad q+Q = -\exp((u-Z)/2)$$
Constructing Bäcklund transformations

Remark Gardner (1978) shows how, for any class 3 hyperbolic system, to construct BT’s of type B_1 to some other PDE; e.g., from $s = e^u$ (Liouville) to $S = QZ$, by

$$X = x, \quad Y = y, \quad Z = p, \quad Q = e^u, P = r$$

Limit our attention to transformations of type B_3: for example,

Suppose Q^4 carries a hyperbolic EDS \mathcal{J} of class 0 (locally, a quasilinear hyperbolic system of PDE for 2 fns. of 2 vars.), generated by Ω_1, Ω_2

–suppose M, \bar{M} carry rank 1 integrable extensions of \mathcal{J}:

\begin{align*}
\begin{array}{ccc}
M & \xrightarrow{\rho} & Q \\
\downarrow & & \downarrow \\
B & \xrightarrow{\bar{\rho}} & \bar{M}
\end{array}
\end{align*}

–i.e., $d\eta \equiv 0 \mod \eta, \rho^* \Omega_1, \rho^* \Omega_2, \&$ same for $\bar{\eta}$

–let $B = \{(m, \bar{m}) \in M \times \bar{M} | \rho(m) = \bar{\rho}(\bar{m})\}$

–such BTs are called holonomic; less interesting
Our main result & its inspiration

—an result in Goursat (credited to Darboux) says that a 2nd-order PDE in the plane can be solved in terms of two arbitrary functions (and finitely many derivatives) by integrating ODE iff the given PDE is Darboux-integrable at some finite k-jet level

—Zvyagin (1991) published a classification of BTs between hyperbolic MA eqns. and the wave equation, omitting holonomics (and proof!)
—obtained 6 examples besides Liouville’s eqn., without giving the PDE in most cases (can identify 4 of them as (I), (II), (III) and (VII))

Theorem (Clelland-I–) A hyperbolic MA equation has a BT to the wave equation if and only if it is Darboux-integrable at the 2-jet level.

—local in the ‘Darboux implies Bäcklund’ direction

—proof is independent of Goursat-Vessiot and Zvyagin classifications
G-structure for Bäcklund transformations

Clelland (2002): assume $\mathcal{I}_1, \mathcal{I}_2$ are hyperbolic MA systems on $\mathcal{M}_1, \mathcal{M}_2$, linked by a BT; then locally on $B^6 \ni$ a coframe $\theta_1, \theta_2, \omega_1, \omega_2, \omega_3, \omega_4$ such that $\pi_1^* \eta_1 = \theta_1$ and $\pi_2^* \eta_2 = \theta_2$ up to multiple, and

\[\begin{align*}
d\theta_1 &\equiv A_1 \omega_1 \wedge \omega_2 + \omega_3 \wedge \omega_4 \pmod{\theta_1}, \quad A_1 \neq 0, \\
d\theta_2 &\equiv \omega_1 \wedge \omega_2 + A_2 \omega_3 \wedge \omega_4 \pmod{\theta_2}, \quad A_2 \neq 0, \quad A_1 A_2 \neq 1, \\
d\omega_1 &\equiv B_1 \theta_1 \wedge \theta_2 + C_1 \omega_3 \wedge \omega_4 \pmod{\omega_1, \omega_2}, \\
d\omega_2 &\equiv B_2 \theta_1 \wedge \theta_2 + C_2 \omega_3 \wedge \omega_4 \pmod{\omega_1, \omega_2}, \\
d\omega_3 &\equiv B_3 \theta_1 \wedge \theta_2 + C_3 \omega_1 \wedge \omega_2 \pmod{\omega_3, \omega_4}, \\
d\omega_4 &\equiv B_4 \theta_1 \wedge \theta_2 + C_4 \omega_1 \wedge \omega_2 \pmod{\omega_3, \omega_4},
\end{align*}\]

–unique up to action of $G = GL(2) \times GL(2)$

–invariants of the BT are A_1, A_2 & vectors $\begin{bmatrix} B_1 \\ B_2 \end{bmatrix}, \begin{bmatrix} B_3 \\ B_4 \end{bmatrix}, \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}, \begin{bmatrix} C_3 \\ C_4 \end{bmatrix}$

–holonomic BTs have $B_1 = B_2 = B_3 = B_4 = 0$

–if $C_1 = C_2 = 0$ or $C_3 = C_4 = 0$, then both \mathcal{I}_1 and \mathcal{I}_2 encode the wave eqn.
“Bäcklund implies Darboux”: sketch of proof

–assume M_1 carries a MA system \mathcal{I}_1 contact-equivalent to the wave equation; then

$$\{\omega_1 - C_1\theta_1, \omega_2 - C_2\theta_1\} \quad \text{and} \quad \{\omega_3 - (C_3/A_1)\theta_1, \omega_4 - (C_4/A_1)\theta_1\}$$

are Frobenius systems (i.e., spanned by exact 1-forms)
–can set $A_1 = 1$, and assume that $C_2 \neq 0$, $C_4 \neq 0$; the above implies

$$d(C_1/C_2) \in J_1 = \{\theta_1, \theta_2, \omega_1, \omega_2\}, \quad d(C_3/C_4) \in J_2 = \{\theta_1, \theta_2, \omega_3, \omega_4\}.$$

Case A: Both J_1, J_2 contain rank 3 Frobenius systems; then

$\{\theta_2, \omega_1, \omega_2\}$ and $\{\theta_2, \omega_3, \omega_4\}$ contain rank 2 Frob. systems, and (M_2, \mathcal{I}_2) encodes the wave equation as well.

Case B: J_2 contains a rank 3 Frobenius system but J_1 doesn’t; again, $\{\theta_2, \omega_3, \omega_4\}$ contains rank 2 Frob. system, so \mathcal{I}_2 is Monge-integrable.
–need to check that the prolongation of \mathcal{I}_2 is Darboux-integrable
“Bäcklund implies Darboux”
Checking Darboux-integrability for Case B

Can set $C_1 = 0$; then θ_2, ω_1 live on M_2 but ω_2 doesn’t.

Fake Argument: Pretend that EDS \mathcal{I}_2 on M_2 is generated by θ_2, $\omega_1 \wedge \omega_2$ and $\omega_3 \wedge \omega_4$\n–on any integral surface with $\omega_1 \neq 0$, \exists a function r such that

$$\omega_2 - r\omega_1 = 0$$

–define (partial) prolongation of \mathcal{I}_2, on $M_2 \times \mathbb{R}$, generated by θ_2 and $\psi = \omega_2 - r\omega_1$ (where r is new coord.) & derivs.
–to check for Darboux-integrability, find $\pi = dr + \ldots$ such that

$$d\psi \equiv \omega_1 \wedge \pi \mod \theta_2, \psi$$

and see if $K = \{\theta_2, \psi, \pi, \omega_1\}$ contains a rank 2 Frob. system

Real Argument: Carry out the above, but replace ω_2 by modified form $\tilde{\omega}_2 = e^a(\omega_2 - b\omega_1)$ that is well-defined on M_2.
“Bäcklund implies Darboux”

Case C: Both \(J_1, J_2 \) contain only rank 2 Frob. systems

- set \(C_1 = C_3 = 0 \); then \(\theta_2, \omega_1, \omega_3 \) well-defined on \(M_2 \)
- using modified forms, define (full) prolongation of \(I_2 \) on \(M_2 \times \mathbb{R}^2 \)
generated by

\[
\psi_1 = \tilde{\omega}_2 - r\omega_1, \quad \psi_2 = \tilde{\omega}_4 - t\omega_3
\]

- find \(\pi_1, \pi_2 \) such that

\[
d\psi_1 \equiv \omega_1 \wedge \pi_1, \quad d\psi_2 \equiv \omega_3 \wedge \pi_2 \quad \text{ mod } \theta_2, \psi_1, \psi_2
\]

and check that the characteristic systems

\[
K_1 = \{ \theta_2, \psi_1, \pi_1, \omega_1 \}, \quad K_2 = \{ \theta_2, \psi_2, \pi_2, \omega_3 \}
\]
each contain a rank 2 Frobenius system.
“Darboux implies Bäcklund”: sketch of proof

Let \mathcal{I} be a hyperbolic MA system on M^5, and $\hat{\mathcal{I}}$ its (full) prolongation on N^7; assume $\hat{\mathcal{I}}$ is Darboux-integrable.

Locally on N, \exists a coframe $(\theta_0, \theta_1, \theta_2, \omega_1, \pi_1, \omega_2, \pi_2)$ such that

- pullback under $\rho : N \to M$ of the contact form is θ_0, up to mult.
- $\hat{\mathcal{I}} = \langle \theta_0, \theta_1, \theta_2 \rangle_{\text{diff}}$, and

$$
\begin{align*}
d\theta_0 &\equiv \omega_1 \wedge \theta_1 + \omega_2 \wedge \theta_2 \mod \theta_0 \\
d\theta_1 &\equiv \omega_1 \wedge \pi_1 \mod \theta_0, \theta_1 \\
d\theta_2 &\equiv \omega_2 \wedge \pi_2 \mod \theta_0, \theta_2
\end{align*}
$$

- characteristic systems K_1, K_2 of $\hat{\mathcal{I}}$ contain Frobenius systems

$$
K_1^{(\infty)} = \{\omega_1, \pi_1\}, \quad K_2^{(\infty)} = \{\omega_2, \pi_2\}
$$

Main Case: Assume \mathcal{I} is not Monge-integrable; then char. systems of \mathcal{I} each contain unique (up to mult.) integrable 1-forms.

- adapt ω_1, ω_2 so that $d\omega_1 \equiv 0 \mod \omega_1, \quad d\omega_2 \equiv 0 \mod \omega_2$
- set of all such coframes gives a G-structure on N with 5-d. fibers
For the G-str. there are connection forms $\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma$ such that

$$d\begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \omega_1 \\ \pi_1 \\ \omega_2 \\ \pi_2 \end{bmatrix} = -\begin{bmatrix} \gamma & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \gamma + \alpha_1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \gamma + \alpha_2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\alpha_1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \beta_1 & -\gamma - 2\alpha_1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\alpha_2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \beta_2 & -\gamma - 2\alpha_2 \end{bmatrix} \wedge \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \omega_1 \\ \pi_1 \\ \omega_2 \\ \pi_2 \end{bmatrix}$$

choose ω_1, ω_2 to be exact, giving $\alpha_1 = D_1 \omega_1, \alpha_2 = D_2 \omega_2$

adjust π_1, π_2 so that

$$d\pi_1 = (\gamma - C_1 \theta_1 + E_1 \omega_1) \wedge \pi_1, \quad d\pi_2 = (\gamma - C_2 \theta_2 + E_2 \omega_2) \wedge \pi_2$$
A BT to the wave equation $Z_{XY} = 0$ would take the form of a bundle B^6 over M, with Z as fiber coordinate:

$$
\begin{array}{cccc}
N^7 & B^6 & \pi \\
\rho & M^5 & \mathbb{R}^5 \\
\end{array}
$$

On the pullback of B to N, the contact form for the wave equation would look like

$$
\Theta = dZ - P \omega_1 - Q \omega_2,
$$

where P, Q are functions on B, such that

$$
dP \equiv P_1 \theta_1 \text{ mod } \theta_0, \omega_1, \Theta \\
dQ \equiv Q_1 \theta_2 \text{ mod } \theta_0, \omega_2, \Theta,
$$

$P_1, Q_1 \neq 0$.

– set up EDS on for functions P, Q on $N \times \mathbb{R}$ (with Z as new coord.)
– torsion absorption requires computing identities among second derivs. of A_i, B_i, C_i, D_i, E_i
– involutive at first prolongation, with $s_1 = 2$

Monge-integrable case: similar argument; BTs depend on $s_2 = 1$
Alternate Approach: Solving for a Bäcklund transformation

For specific equations on the Goursat-Vessiot list, it’s possible to solve PDE to get an explicit BT to the wave equation.

Example: Assume the BT for Liouville’s equation $s = e^u$ takes the form $p = f(u, x, y, Z, P, Q)$, $q = g(u, x, y, Z, P, Q)$. Then

$$(dp - e^u dy) \land dx \equiv ((f_y + qf_u + Qf_Z - e^u)dy + f_P dP + f_Q dQ) \land dx$$

mod contact forms, so that $f_Q = 0$, $f_y = e^u - gf_u - Qf_Z$; similarly $g_P = 0$ and $g_x = e^u - fg_u - Pg_Z$.

Other PDEs arise from requiring that

$$r - \frac{1}{2}p^2 = f_x + ff_u + Pf_Z + Rf_P - \frac{1}{2}f^2$$ = a function of x, P, R only

$$t - \frac{1}{2}q^2 = g_y + gg_u + Qg_Z + Tg_Q - \frac{1}{2}g^2$$ = a function of y, Q, T only,

implying that

$$f_{Pu} = f_{PZ} = 0, \quad \partial_Z, \partial_u, \partial_y(f_x + ff_u + Pf_Z - \frac{1}{2}f^2) = 0,$$

$$g_{Qu} = g_{QZ} = 0, \quad \partial_Z, \partial_u, \partial_x(g_y + gg_u + Qg_Z - \frac{1}{2}g^2) = 0.$$
Solving for BT’s: Example, continued

Differentiating and equating mixed partials yields more equations:

\[f_z = -g_Q f_u, \quad g_z = -f_P g_u, \quad f_P x = 0, \quad g_Q y = 0, \]

then

\[2g_u f_u = e^u, \quad g_Q = -f_P = \text{constant}. \]

–system is now involutive, again with \(s_1 = 2 \)

–setting \(f_P = 1 \), solve these equations to get the BT

\[
\begin{align*}
p &= P + 2 \exp((u + z + v(x) + w(y))/2) + v'(x) \\
q &= -Q + \exp((u - z - v(x) - w(y))/2) - w'(y)
\end{align*}
\]

where \(v(x) \) and \(w(y) \) are arbitrary functions

–using this technique shows BTs to the wave equation exist for (IV), (V), (IX), (XI), (XII) and (XIII); can obtain some explicit examples

–for (XI), (XII) and (XIII) all such BTs are holonomic, with \(s_1 = 2 \)

–technique not feasible for Monge-integrable (VI), (VIII), (X)
Open Problems

- Relate these Bäcklund transformations to *nonlinear superposition formulas* (Anderson, Fels, Vassiliou)
- Identify remaining Zvyagin examples using Biesecker’s characterizations
- Characterize special types of BTs: quasilinear, variational, and especially *auto-Bäcklund transformations*
- Completely integrable PDE (‘soliton’ equations) often have BTs containing an arbitrary parameter, e.g., for sine-Gordon

\[
\begin{align*}
 v_x &= u_x + \frac{\lambda}{2} \sin((u + v)/2) \\
 v_y &= -u_y - \frac{1}{2\lambda} \sin((u - v)/2).
\end{align*}
\]

\(\lambda \neq 0\).

- characterize those BTs where a parameter can be inserted (e.g., by lifting a symmetry from one side).